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Rhythmic chew cycles with distinct
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Intra-oral food processing, including chewing, is important for safe swallowing
and efficient nutrient assimilation across tetrapods. Gape cycles in tetrapod
chewing consist of four phases (fast open and -close, and slow open and
-close), with processing mainly occurring during slow close. Basal aquatic-
feeding vertebrates also process food intraorally, but whether their chew
cycles are partitioned into distinct phases, and how rhythmic their chewing
is, remains unknown. Here, we show that chew cycles from sharks to salaman-
ders are as rhythmic as those of mammals, and consist of at least three, and
often four phases, with phase distinction occasionally lacking during jaw open-
ing. In fishes and aquatic-feeding salamanders, fast open has the most variable
duration,more closely resemblingmammals than basal amniotes (lepidosaurs).
Across ontogenetically or behaviourally mediated terrestrialization, salaman-
ders show a distinct pattern of the second closing phase (near-contact) being
faster than the first, with no clear pattern in partitioning of variability across
phases. Our results suggest that distinct fast and slow chew cycle phases are
ancestral for jawed vertebrates, followed by a complicated evolutionary history
of cycle phase durations and jaw velocities across fishes, basal tetrapods
and mammals. These results raise new questions about the mechanical and
sensorimotor underpinnings of vertebrate food processing.

This article is part of the theme issue ‘Food processing and nutritional
assimilation in animals’.
1. Introduction
Intra-oral food processing using repeated mandibular motion cycles occurs in
jaw-bearing vertebrates (Gnathostomata) from fishes to mammals [1,2], and is
key to bolus reduction [3,4] and nutrient assimilation in the gastrointestinal
tract [5–7]. Rhythmic chewing—repetitive gape cycles with a duration coefficient
of variation (CV) < 25% [1,2]—is thought to optimize energetic efficiency bymini-
mizing disruptions to the natural oscillating frequency of repeatedly elevating
and depressing the mandible. Mandibles are typically long and heavy structures
[8] anddisruptions to the natural oscillation frequencyof heavyor rapidlymoving
structures can incur substantial inertial penalties [9,10]. Repeated (cyclic) power-
strokes require energy expenditure for the cyclic muscle contractions that move
the mandible and other dentition-lined intra-oral surfaces, and to generate the
bite force used for food fracture [11]. Moreover, while chewing promotes bolus
control and safe swallowing [12], it also inflicts wear [13–15] and is associated
with a risk of dentition fracture or loss [16,17], which is especially problematic
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in mammals because they perform a lot of intra-oral food pro-
cessing and only have one set of molar teeth. Taken together,
these factors suggest that, while chewing may expand the
range of foods that can be processed to yield nutrition and
the efficiency with which this happens, it is not necessarily
beneficial for all animals to chew.

Cyclic chewing occurs in disparate clades across the
gnathostome phylogeny, including aquatic fishes [1] and
terrestrial mammals [8], but also in some lepidosaurs, includ-
ing Sphenodon [18–21] (electronic supplementary material,
videos S1–S3). However, most lepidosaurs that chew do so
less rhythmically than mammals and fishes [8]. The apparent
phylogenetically fragmented distribution of rhythmic chew-
ing prompts several questions. We first ask: (I) Is rhythmic
chewing ancestral for gnathostomes? Our second question
is: (II) How rhythmic is chewing in amphibians?

Chewing with rhythmic mandible movements has been
hypothesized to increase kinematic and kinetic predictability,
facilitating motor control and thereby decreasing tooth wear
and risk of tooth fracture. Predictability may be generally
advantageous in many feeding contexts [22], but may be less
important in the aquatic realm, where incompressible fluid
inside the oral cavity can buffer against excessively fast jaw
closing. However, drag of a viscous fluid may simultaneously
increase the risk of food escape [1] and reduce the ability
to oscillate the mandible close to its natural frequency,
whereas lubrication of the intra-oral cavity by water may
suppress friction-based impacts on rhythmicity [23]. The chal-
lenges associated with chewing in water beg the question of
whether and inwhatway aquatic chewing resembles terrestrial
chewing? As previously suggested [1], we hypothesize that
(i) fishes and salamanders lack a phase transition between
fast- and slow close—as well as between fast- and slow
open—to avoid food escape while the mouth gape is
expanded, with the alternative hypothesis that their jaw open-
ing and closing are partitioned into distinct slow and fast
phases. Our third question is: (III) How do aquatic-to-terres-
trial transitions impact the phase structure and rhythmicity
of chew cycles? (ii) Our second hypothesis is that in salaman-
ders the phases of chew cycles during aquatic feeding are
retained post-terrestrialization. Here, we make inroads on
these questions by studying chewing in four salamander
species across ontogenetically and behaviourally mediated
terrestrialization.

Mammals have been hypothesized to maintain rhythmic
chewing by trading off the durations of gape cycle phases
[2,12]. High rhythmicity has also been hypothesized to protect
the precisely occluding dentition in mammals during high-
force application [24]. Primates have also been hypothesized
to maintain rhythmicity by using rate-modulation (i.e. speed-
based control) of force application during the slow close
phase or ‘power-stroke’, aided by anticipatory—feed-forward
control—mediated by γ-motoneurons to muscle spindles
[8,25–28]. By contrast, lepidosaurs lack γ-motoneurons and
hence lack any feed-forward control of muscle spindle sensi-
tivity, and they accumulate phase variation in slow open [2].
Available evidence suggests that basal aquatic-feeding ana-
mniotes lack jaw muscle spindles ([29], but see [30]), hence
our fourth question is: (IV) How is variation in jaw movement
duration and velocity distributed across chew cycle phases?

To address our four questions and test our two hypotheses,
we analyse the CV of jaw cycle duration, and use CV < 25% as
the threshold for rhythmic chewing (a cut-off informed by
comparative data from Gintof et al. [1] and Ross et al. [8],
as advocated by Wainwright et al. [31]). We also analyse jaw
velocity in statistically distinguishable phases of chew cycles
to determine if basal vertebrates maintain distinct chew cycle
phases, with potential implications for energy conservation
and feeding safety.
2. Material and methods
Data collection complied with institutional animal care and
use protocols and federal assurances (see Ethics section). Infor-
mation about our sample for each species is listed in electronic
supplementary material, table S1. All data used in this study
were collected as part of other studies. However, our taxon
sampling sought to achieve a balanced representation of the
major aquatic-feeding lineages of sarcopterygians, whilst by
necessity excluding some important taxa (Neoceratodus, Andrias,
Cryptobranchus) due to their rarity or protection status.

(a) Experiment preparations
We collected jaw kinematics data on intra-oral feeding behaviours
using biplanar videofluoroscopy [32] for Potamotrygon motoro
(ocellate river stingray) [33], Polypterus bichir (Bichir), Protopterus
annectens (African lungfish), Necturus maculosus (mudpuppy),
Amphiuma means (two-toed Amphiuma), Plethodon glutinosus
(Northern slimy salamander), Siren intermedia nettingi (Western
lesser siren) [34], Ambystoma tigrinum (tiger salamander), Ambys-
toma mexicanum (Axolotl) [35,36], Triturus carnifex (Italian crested
newt) [37,38] and Ichthyosaura alpestris (alpine newt) [39]. Sonomi-
crometry was used to measure jaw movements in Chiloscyllium
plagiosum (bamboo shark) [40].

In preparation for biplanar videofluoroscopy, animals were
induced into a deep plane of anaesthesia (by immersion in
either Benzocaine 1.5–2.5 g l−1 or phosphate-buffered MS222
0.05%) and radio-opaque, tantalum markers (0.5–1.0 mm
diameter; Ball-Tec, LA CA. Abbott-balls, West Hartford, CT)
were implanted. For this study, we focused on data from a pair
of markers, one implanted in the premaxilla (upper jaw) and
another in the anterior mandible (Meckel’s cartilage in the rays).
All subjects also had other markers implanted for other studies.
Skin incisions required for implants were either less than 10 mm
long and healed without assistance in 5–6 days or were closed
with a single stitch of self-absorbable suture. After marker implan-
tation, subjects were monitored during recovery and fasted for 2–3
days to avoid mechanical influences of chewing that could dis-
lodge implants from bones. An X-ray sequence was recorded to
ensure successful marker implantation.

Bamboo sharks were fasted for 2–3 days prior to all pro-
cedures. Each was anaesthetized by immersion in 0.1 g l−1

solution of MS-222 in 22–23°C seawater, then moved to a custom
temperature-controlled and aerated intubation system containing
a diluted solution (0.05 g l−1 MS-222) for surgery. Implants con-
sisted of two 2 mm piezoelectric crystals with suture loops
(Sonometrics Corp) positioned on the sagittal plane. Both were
sutured immediately lingual to the tooth-pads, one on the palato-
quadrate and one on Meckel’s cartilage (upper and lower jaw,
respectively). Wires leads were routed through the fifth gill slit
and tethered to a suture loop on the animal’s dorsum so they
could be connected to the sonomicrometer during experiments.
Sharks were allowed to recover for 3–4 h after the implantation
procedure before feeding experiments began.

(b) Feeding experiments
Animals with tantalum implants were imaged during feeding
in one of the biplanar X-ray facilities at Harvard University
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(Concord Field Station), Brown University (W. M. Keck XROMM
facility) or University of Jena. Animals were first habituated over
several days to testing tanks (910 × 70 × 150 mm L ×W ×H ) made
from 7 mm thick acrylic, which is sufficiently radio-lucent for
fluoroscopy imaging. The tanks were designed to fit within the
visualization volume of two fluoroscopes that were arranged
near-orthogonally.

During experiments, subjects were presented with food that
they readily consumed (electronic supplementary material,
table S1) but did not vary substantially in hardness and mobility,
which could influence feeding kinematics. Elasmobranchs were
fed squid pieces, salamandrids were fed maggots and all other
species were fed crickets. Food items were carefully size-matched
to the gape-width of the subject and worms occasionally had
to be cut to avoid food-size effects on kinematics. During
experiments, food items were implanted with one or more radio-
opaque markers so that intra-oral food movements could be
visualized. Rostrocaudal food movement during a cycle was
used to distinguish transport (movement > 0.25 s.d. of the mean
movement for all cycles) from processing cycles (less than 0.25
s.d.; see details in [41]), with only the latter being analysed here.

Food was presented via plastic forceps and post-capture
feeding behaviours were imaged using X-ray techniques ranging
from 75 to 85 kVp and 2.5 to 3.0 mA; camera frame rates ranged
from 125 to 500 Hz (see electronic supplementary material,
table S1). Videos were captured onto PC hard drive via proprie-
tary software from the high-speed video camera manufacturers
(Photron; FastCam Viewer v.1.3.40. Photron, Tokyo JP. Phantom;
Visart v.5.0, High Speed Vision GmbH, 76275 Ettlingen,
Germany). For bamboo sharks, sonomicrometry data were
captured at frequencies of 377–415 Hz onto a PC hard drive
via the SonoView package (Sonometrics).

After experiments, subjectswere euthanized by immersion in an
overdose of the anaesthetic agent used for surgeries (see above) and
frozen for dissections and morphological measurements.

(c) Extraction of chew cycle data
We limited our analyses to trains of more than two cycles of
rhythmic jaw movement following the prey-capture strike. For
stingrays, we excluded all shearing overbite cycles and the
single recovery cycle immediately following overbite events
[33]. For lungfish (Protopterus) and mudpuppies (Necturus), we
excluded the suction cycles that occur between trains of rhythmic
processing [42]. An overview of the total chew cycle sample
available for analysis from each species is shown in electronic
supplementary material, table S2.

(d) Data processing
For each selected trial, the two camera views were un-distorted
and spatially calibrated via direct linear transformation, and
the upper and lower jaw markers were 3D-tracked in XMAlab
(v.1.5.5.) [43]. Jaw kinematics were exported as CSV files contain-
ing the time-varying inter-marker distances between upper and
lower jaw markers. For P. motoro, jaw cycles were extracted
using a joint-coordinate system for the quadrate-articular jaw
joint in the XROMM workflow [33]. All time-varying gape data
were imported into IgorPRO (v.8.1; Wavemetrics), scaled to the
sample (video or sonomicrometer) frequency for the experiment
and filtered using FIR interpolation to the extent that differen-
tiation (see below) would not result in spurious fluctuations in
the resulting time-varying velocity profiles.

(e) Analyses of chew cycle duration
To address our first two questions—is rhythmic chewing ances-
tral for gnathostomes and present in amphibians?—we first
identified trains of chew cycles, with a train containing two or
more uninterrupted cycles. We then extracted the duration
from max gape to max gape (in milliseconds) [1,8] and
calculated the CV (%) as

CV ¼ 1þ 1
4
ðNÞ � s

m

� �
� 100,

where N is the sample size from that taxon (number of cycles)
and s is the standard deviation around m, the mean of the
variable. To facilitate comparisons with data from previous
studies and to correct for the very small sample sizes in some
species [44] we followed established protocols of calculating
sample-size corrected CV [1,2].

( f ) Analyses of chew phase duration and velocity
Weused time-varying velocity to objectively identify the inflection
points on the gape distance or angle that marked transitions
between the four gape cycle phases [45]. We were able to objec-
tively identify all three inflection points (fast close (FC)–slow
close (SC), SC–slow open (SO) [=minimum gape], SO–fast open
(FO)) in all gape cycles and used them for further analyses
(table 1). Using these inflection points, we extracted the duration
of each cycle phase (in milliseconds; figure 1). The speed-based
(fast and slow) designations in the original analysis of gape open-
ing and closing cycle phases [12], coupled with subsequent
ambiguity in the literature about the relative speed of the four
different phases [46,47] motivated us to extract mean velocity for
each phase for statistical comparisons. Phase duration and jaw vel-
ocity are theoretically at least partially independent and related to
functionally distinct aspects of food processing [24].

(g) Hypothesis-testing and statistical design
To address our third and fourth questions, we sought to determine
the numbers of phases in the gape cycles of each species by com-
paring jaw movement velocities. Jaw closing velocity was
compared across fast- and slow close phases, and jaw opening vel-
ocity was compared across slow- and fast open phases. Analysis of
mean phase velocities across cycles for a given species involved
general linear models (Systat v.12.0) that factored phase velocity
as the response variable, phase type (fast or slow) as the indepen-
dent effect and subject as a random factor, to account for
behavioural differences between individuals (i.e. where individual
N > 1). In our figures, CV data were plotted as mean ± s.e.m.
(figure 2) and phase durations and speeds were plotted as
median-quartile boxes, with whiskers indicating data-ranges and
dot-density distributions of all cycle data (figure 3).
3. Results
(a) Mandibular kinematics and cycle rhythmicity
Intra-oral food processing is widespread among basal
gnathostome vertebrates, with trains of cyclic chewing occur-
ring across all species studied here. There is considerable
variability in the number of chews used during a given feed-
ing event. Because X-ray videos by necessity are briefer than
traditional high-speed video, due to risks of cathode over-
heating, we do not have entire feeding sequences for most
species. However, we observed cyclic movements of the
mandible to occur in trains incorporating only three to six
cycles in the bamboo shark C. plagiosum and the salamander
A. means, whereas the lungfish P. annectens and the stingray
P. motoro use trains of 60–80 + cycles.

Our data show that the 12 basal gnathostome species in our
sample, with very few exceptions (Amphiuma and Axolotls),
chew with jaw movements that are rhythmic (CV < 25%)



Table 1. Statistical test results of differences in velocities between fast and slow close and open phases. FC–SC (GLM on mean velocities for fast close versus
slow close); SO–FO (GLM on slow open versus fast open mean velocities). AQ, aquatic; TE, terrestrial.

species fluid FC–SC (GLM) SO–FO (GLM) no. phases

Chiloscyllium plagiosum AQ 0.0001a 0.01a 4

Potamotrygon motoro AQ 0.0001a 0.36 3

Polypterus bichir AQ 0.064 0.01 3

Protopterus annectens AQ 0.001 0.001 4

Necturus maculosus AQ 0.001 0.14 3

Amphiuma means AQ 0.49 0.18 2

Amphiuma means TE 0.34 0.12 2

Plethodon glutinosus TE 0.15 0.56 2

Siren intermedia nettingi AQ 0.0001a 0.0001a 4

Ambystoma tigrinum AQ 0.0001a 0.0001a 4

Ambystoma tigrinum TE 0.0001 0.0001 4

Ambystoma mexicanum AQ 0.0001 0.0001 4

Ambystoma mexicanum TE 0.65 0.08 2

Triturus carnifex AQ 0.67 0.01a 3

Triturus carnifex TE 0.22 0.0001a 3

Ichthyosaura alpestris AQ 0.01 0.001a 4
aStatistically significant individual effect.
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(figure 2; electronic supplementary material, videos). Chew
cycle CVs for these taxa (figure 2a) are similar to those of
fishes andmammals, and lower than those reported for lepido-
saurs (figure 2b) [1,2]. Species-level CVs range from 11.6 ± 2.0%
in Siren to over +40% in Amphiuma and terrestrial ambystoma-
tids. Grand average CVs (± s.e.m.) are 21.2 ± 3.2% for fishes
(shark, ray, bichir and lungfish), 20.2 ± 2.1% for aquatic
salamanders and 36.3 ± 4.5% for terrestrial salamanders.
Terrestrialization results in elevated jaw movement CV (i.e.
chewing being less rhythmic on land) for Amphiuma, and the
ambystomatids but notably not for the newt T. carnifex.
(b) Chew cycle phase durations
Phase durations vary considerably through chew cycles
and across species (figure 3a). In chondrichthyans the
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fastest phases tend to have shorter durations than the slow
phases. In Polypterus and among most salamanders, slow
open is the longest and most variable phase. Across
terrestrialization (in ambystomatids, newts and Amphiuma),
terrestrialized tiger salamanders retain the phase duration
pattern of their larval morphs, with slow-open having a
longer and more variable duration. In the chemically
metamorphosed Axolotl [49] fast open lasts longer and
has a more variable duration than the other phases.
In Amphiuma and the multiphasic newt Triturus there are
no distinguishable changes in phase duration in response
to terrestrialization.

(c) Chew cycle phase velocities and variance
The gape velocities of phases often follow the four phase
names: fast close is the fastest, and also has the most variable
velocity (figure 3b). In the chondrichthyans, there are distinct
fast and slow close phases, and slow and fast open phases,
with statistically significantly different velocities (figure 3
and table 1). In basal fishes and aquatic salamanders, there
are usually four phases, but slowand fast open phase velocities
are not always distinct. In some, but not all terrestrialized sal-
amanders, a break-down of the fast-to-slow transitions
results in a biphasic (close-open) chew cycle pattern.
4. Discussion
Our analyses show that cyclic intra-oral food processing—
chewing—is widespread among gnathostome vertebrates.
We previously documented trains of intra-oral food proces-
sing cycles in several species of teleost fish [1], and here we
complement that prior analysis with data from sharks, rays,
bichirs, lungfish and salamanders. Analyses of chew cycle
duration CV answered our first question by revealing that
rhythmic jaw movements during chewing occur across
basal aquatic-feeding anamniotes, in at least some of the
most ancestral extant species of chondrichthyans (bamboo
sharks and stingrays), in the basal-most extant actinoptery-
gian (bichirs) and in basal sarcopterygians (lungfish). These
analyses also answered our second question by showing
that extant salamanders (Caudata) are capable of chewing
rhythmically, similar to ancestral (fish) and derived (amniote)
taxa. In combination with previously published results for
fishes, lepidosaurs and mammals [1,2], our data demonstrate
that rhythmic chewing (chew cycle duration CV < 25%) is the
ancestral condition for gnathostome vertebrates.

Our velocity-based approach was able to statistically par-
tition chew cycles into their constituent phases of fast close,
slow close, fast open and slow open [12]. This analysis rejected
our first and previous working hypothesis [1], that fishes and
salamanders would lack fast-to-slow close and slow-to-fast
open phase transitions, instead demonstrating that transitions
between fast and slow jaw movements are not exclusive to
mammals. In fact, our data suggest that the fast-to-slow tran-
sition in jaw closing may be ancestral to gnathostome
vertebrates, whereas a slow-to-fast transition in jaw opening
may have been established in aquatic-feeding anamniotes,
prior to the origin of Tetrapoda.

(a) Evolution of chewing rhythmicity across
Gnathostomata

Our rhythmicity data (figure 2) show that rhythmic chewing
(cycle duration CV< 25%) is widespread across basal,
aquatic-feeding anamniotes (chondrichthyans, sarcopterygians
and salamanders). Indeed, chewing in many of these taxa
is highly rhythmic (CV≤ 20%). Although more extensive
sampling of chondrichthyans (sharks and rays) and basal sar-
copterygians (lungfishes) is clearly needed, the data presented
here, in combination with those from bony fishes [1] and
amniotes [8], suggest that rhythmic chewing is the ancestral
condition for gnathostomes.

As groups, fishes and salamanders chew rhythmically
(23.7 ± 2.1% and 21.2 ± 3.2%, respectively), even compared to
mammals (23.05 ± 12.19; n = 78 [8]). A recent analysis of chew
and locomotion cycle CVs for six salamander species reported
a significantly higher chewing grand average (50.44 ± 33.12%)
[50] than our data for the same six species (18.55 ± 2.53%), a
difference that may be due to small sample sizes in that
study. In that context, it is important to note that CV can
be significantly affected by small sample sizes [44], and
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consequently, our data for Amphiuma and terrestrialized
ambystomatids (all n = 1) should be considered with caution.
Using our results, the analysis of Faltings et al. [50] would
suggest that chewing and locomotion are equally rhythmic
(22.20 ± 5.66%) in those six amphibian species.

Our rhythmicity results for basal aquatic-feeding ana-
mniotes raise new questions about how the rhythmicity of
gnathostome jaw systems is controlled. Our data show that
chewing can be rhythmic in the absence of the sensorimotor
traits hypothesized to facilitate rhythmic chewing in mammals
(muscle spindles, as well as γ-motoneurons and periodontal
afferents that engender feed-forward control) [8,25–28]. Earlier
studies have also shown that some lepidosaurs, including the
basal Sphenodon, chew highly rhythmically [18–20], presum-
ably only with sensorimotor aid from α- and β-motoneurons
[8]. Moreover, fishes that chew rhythmically lack the sensori-
motor traits that are thought to govern chewing rhythmicity
[29,51], so how do basal gnathostomes chew so rhythmically?

Rhythmic chewing may be a relatively unmodulated
manifestation of central-pattern-generation [52], and possibly
a carry-over from the ancestral pulsing constrictions of the
branchial apparatus [53], which according to the serial hom-
ology hypothesis [54] gave rise to vertebrate mandibular and
hyoid arch elements [53]. The location of the ventilatory pat-
tern generator in lampreys, adjacent to the trigeminal motor
nucleus responsible for innervating jaw muscles across
gnathostomes, provides neuroanatomical support for the
serial homology hypothesis [55].

In bony fishes (Actinopterygii), there are up to three separ-
ate jaw systems, associated with the mandibular-arch, the
basihyal (tongue) and buccal cavity roof [56], and/or the phar-
yngeal arches [57,58]. These three systems provide alternative
sites for intra-oral food processing, but the CV of their cycle
kinematics is generally low (less than 20%) [57–59]. Conse-
quently, it is reasonable to speculate that chewing with
arrhythmic cycles (i.e. CV > 30%) may have evolved once as a
derived condition in lepidosaurs (figure 2b). Among lepido-
saurs, gape cycle duration is heavily influenced by the
duration of slow open, which is not the case in mammals.
During slow open, the tongue engages the food bolus in the
oral cavity in preparation for its repositioning during fast
open. Why might lepidosaurs have more variable slow open
phases thanmammals? Our data suggest that a highly variable
slow open duration is ancestral to gnathostomes, but this is not
itself an explanation for its retention in lepidosaurs. Among
lepidosaurs, squamates often feed on large prey that are
rarely processed intraorally and sometimes transported
directly to the oesophagus for swallowing via inertial (throw-
and-catch) food handling behaviours [60,61]. This feeding
style has been argued to be associatedwith altered tonguemor-
phology, which might compromise the ability of some lizards
to effectively move food items intraorally during chewing
[60,62]. Lepidosaurs also use their tongues for chemoreception,
possibly enforcing a compromise in tongue function between
sensation of odorants and intra-oral bolus manipulation
[63,64]. Further work on tongue–jaw coordination in lizards
is clearly needed.
(b) Evolution of chew cycle phases
In mammals, the chew cycle is partitioned into four phases:
fast close, slow close, slow open and fast open [12,65]. Our
data from chondrichthyans (bamboo sharks and stingrays)
suggest that both fast close and slow close phases are ances-
tral to gnathostomes (figure 3). Our analysis also suggests
that both slow open and fast open phases, as seen in
the bamboo shark, the bichir and the lungfish (figure 3),
predate the origin of tetrapods.

Among tetrapods, our analysis of chew cycle phases in
two salamander clades (figure 3) established differences in the
extent to which chew cycles were partitioned into phases: one
clade (Necturus, Amphiuma, Plethodon) often lacked fast-to-slow
transitions (although Necturus retains a fast-to-slow close tran-
sition), whereas the other clade (Siren, ambystomatids and
salamandrid newts) usually showed four phases (figure 3).
The basis for this difference between salamander clades is
unknown but worthy of further study as it may be related to
aquatic versus terrestrial lifestyles (see below). The fast-to-slow
close transition may simply owe to mechanical interactions
between the teeth and the food coming into occlusion, and
the slow-to-fast open transition may owe to adhesive or
drag forces between the food, jaws and surrounding fluid [23].
The mere existence of chew cycle phases, however, is ancient
and, if the slow-to-fast open transition in mammals is
triggered by sensory feedback driving lingual manipulation of
the intra-oral bolus, then the functional underpinnings of this
transition in mammals are not the same as those underlying it
at its origin.
(c) Variation in chew cycle phases durations and speeds
In order to discriminate phases within a given chew cycle, we
took two approaches. The first approach simply evaluated
phase durations, as was done previously for lepidosaurs
and primates [2]. Across our sample, the duration of slow
open was generally the longest and most variable for aquatic
chewing (figure 3). This finding runs counter to the hypothesis
that aquatic-feeding species would typically lack slow open
due to the inherent risks of food escape associated with main-
taining jaw gape in a viscous dense fluid [1]. The slow open
phase is precarious in the aquatic environment, is a precarious
phase in the aquatic environment, where both food and fluid
forces may be acting to slow down mandible movements,
potentially explaining why its duration is both prolonged
and variable. Whereas prolonged and variable slow open
phases also are seen in lepidosaurs [2], mammals (with pri-
marily primates analysed to date) either partition variability
in chew phase duration across both fast open and fast close
(primates) [2] or in the case of flying foxes, into slow close
[66]. In the case of bats, this result may be a secondary effect
of hanging inverted whilst chewing.

Our second approach to discriminating chew cycle
phases drew inspiration from the velocity-based approach
to determining chew phase durations in an earlier study
[2]. Whereas that study only used time-varying velocity to
objectively identify inflection points in the time-varying
gape kinematics that delineated boundaries between cycle
phases, we chose to extract mean velocities for each phase
for statistical comparisons. These data provide a functionally
relevant metric that (for jaw closing) may correspond better
than phase duration to the rate of force application by jaw
muscles on the food via the mandible [24]. We also con-
sidered evidence suggesting that the relative velocity of the
four phases may not correspond to their nominal labels,
with for instance ‘fast open’ in some mammals being
slower than ‘slow open’ [47,67].
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Our velocity-based analyses provide new insight into par-
titioning of within-cycle variation across phases: for nearly all
species analysed, fast close was indeed the fastest phase, but
also the phase into which the most variability in velocity was
partitioned across cycles. Again, this result likely reflects
challenges associated with fast jaw closing in a dense viscous
fluid, coupled with mechanical interactions between the jaw
and the food upon occlusion.

Reliable analyses of phase velocity require precise and
accurate data, such as those obtained from XROMM and
sonomicrometry. In the many studies where gape cycles
have been imaged using standard or infrared light, the results
may have been impacted by soft-tissue artefacts [68] and our
derivative approach may yield spurious results for visual
light-based motion capture data. Fortunately, X-ray-based
data on gape kinematics are rapidly becoming available
from a swath of lepidosaurs and mammals (e.g. [69–71]),
which will facilitate future velocity-based analyses of chew
cycle partitioning into phases.

One related shortcoming of our study is that we did not
extract six degree-of-freedom mandible movement from
XROMM models (except for P. motoro) and instead relied on
a fluoromicrometry-based approach [32] to extract the vertical
(arcuate) component of jaw movement. Thus, our gape ana-
lyses ignored transverse and propalinal jaw movements, as
well as hemi-mandibular roll [69,72], which were recently
demonstrated for Siren chewing [34]. However, the contri-
bution of mandible roll to the vertical gape distance is likely
small andwe are confident that this methodological limitation
does not impact the general take-homes of our study.
(d) Terrestrialization-related changes to chew cycles
We analysed data from eight salamander species, systemati-
cally sampled from two clades of their phylogeny to provide
repeated examples of terrestrializing taxa. One clade contains
the obligately aquatic Necturus as a basal sister to a clade con-
taining Amphiuma and plethodontid (lungless) salamanders.
Amphiuma is known to venture on land [73], and adult pletho-
dontids (as studied here) are highly terrestrial [74]. The other
clade contains Siren, which also ventures on land [73], and is
a basal sister to the ambystomatid ‘mole’ salamanders that
often, but not always, terrestrialize [49], and salamandrid
newts with a multiphasic lifestyle that involves seasonal
switches between aquatic (summer) and terrestrial (winter)
stages [37,38,75,76]. We did not study terrestrialized Ichthyo-
saura nor did we coerce Siren onto land, but we generated
data for four independent comparisons of chew cycles between
aquatic stage salamanders and their terrestrialized conspeci-
fics. These data allowed us to address our third question:
how do aquatic-to-terrestrial transitions impact the phase
structure and rhythmicity of chew cycles?

Our second hypothesis, that the chew cycle phases of
aquatic salamanders are retained post-terrestrialization, was
only partially supported by our data. Our CV data revealed
a near-doubling in cycle variability as ambystomatids and
Amphiuma chewed terrestrially, compared to aquatically, a
change that was notably absent for the multiphasic newt
Triturus. Similar pronounced taxon-specific differences were
seen in the effect of terrestrialization on the phase pattern.
Adult tiger salamanders retained the larval phase duration
pattern but significant redistribution in phase speeds was
observed. In the Axolotl, sister taxon to the tiger salamander,
chemically induced metamorphosis led to an extended and
more variable fast open phase as opposed to slow open in
most other taxa, and we also observed a complete breakdown
of the chew cycle phase pattern, resulting in a biphasic
(open–close) chew cycle, similar to terrestrialized newts
and Plethodon.

The breakdown of the four-phase gape cycle with terres-
trialization, resulting in a biphasic (open–close) chew cycle,
is interesting as it may signal complications in maintaining
jaw kinematics associated with this pivotal transition in
vertebrate evolution. There are many potential factors
explaining the observed changes in chew cycle rhythmicity,
duration and phasing, including anatomical, physiological
and mechanical ones. Future work should model the changes
in food and jaw (reaction) forces to determine how chewing is
affected by the collapse of the oral volume that results from
replacing its filling of water with air [77,78], and how changes
to lubrication (by water versus saliva) of the oral space affect
chewing [23]. There is clearly a need to better understand the
basis for adjustments to coordination of jaw and tongue kin-
ematics between aquatic and terrestrial food processing.
Multiphasic newts experience these changes seasonally, yet
anatomical analyses of their feeding system have only
revealed subtle changes in oral morphology associated with
these habitat switches [37,38,76]. However, the pattern of
food processing in newts changes from chewing in the
larval form to a ‘tongue-palate rasping’ strategy during meta-
morphosis [37,38,76]. Regardless, the available data suggest
that both plethodontids and salamandrid newts maintain a
rhythmic jaw cycle (CV < 25%) across terrestrialization,
whereas ambystomatids and Amphiuma do not. Clearly,
more work is needed to determine how morphological,
physiological or mechanical traits might explain the differ-
ences in cycle properties we observed in salamanders across
terrestrialization. Additional promising areas of future inves-
tigation include studies of the modulation of jaw and tongue
kinematics, as well as of activity in the muscles that drive
them, to address the question of how sensory feedback and
central-pattern generators interact to control chewing rhyth-
micity. In this context, the receptor arsenal in the muscles
and oral cavities of nonmammalian vertebrates clearly
needs closer examination.
5. Conclusion
We show that rhythmic chewing is the norm for gnathostome
vertebrates, with notable exceptions being lepidosaurs
and some post-metamorphic, terrestrialized salamanders.
The subdivision of chew cycles into phases is also ancestral,
at least predating Tetrapoda, and therefore not to be inter-
preted as a special condition in tetrapods. Indeed, this
analysis instills caution about a priori accepting functional
traits as synapomorphies for a given clade without deeper
evolutionary analyses as this increases the risks of mis-
understanding evolutionary drivers of functional changes.
We also note that analysing duration or speed of cycle
phases likely results in different interpretations of the
constraints on maintaining rhythmicity as our duration ana-
lyses suggested that slow open is most variable, whereas
average phase speed was most variable for fast close.
Finally, we have made inroads on determining how a major
life-history transformation—terrestrialization—influences the
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biomechanics of chewing, a crucial survival system in gnathos-
tome vertebrates.
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