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The precise control of bite force and gape is vital for safe and e�ective breakdown

and manipulation of food inside the oral cavity during feeding. Yet, the role of

the orofacial sensorimotor cortex (OSMcx) in the control of bite force and gape

is still largely unknown. The aim of this study was to elucidate how individual

neurons and populations of neurons in multiple regions of OSMcx di�erentially

encode bite force and static gape when subjects (Macaca mulatta) generated

di�erent levels of bite force at varying gapes. We examined neuronal activity

recorded simultaneously from three microelectrode arrays implanted chronically

in the primary motor (MIo), primary somatosensory (SIo), and cortical masticatory

(CMA) areas of OSMcx. We used generalized linear models to evaluate encoding

properties of individual neurons and utilized dimensionality reduction techniques

to decompose population activity into components related to specific task

parameters. Individual neurons encoded bite force more strongly than gape in all

three OSMCx areas although bite force was a better predictor of spiking activity in

MIo vs. SIo. Population activity di�erentiated between levels of bite force and gape

while preserving task-independent temporal modulation across the behavioral

trial. While activation patterns of neuronal populations were comparable across

OSMCx areas, the total variance explained by task parameters was context-

dependent and di�ered across areas. These findings suggest that the cortical

control of static gape during biting may rely on computations at the population

level whereas the strong encoding of bite force at the individual neuron level

allows for the precise and rapid control of bite force.
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Introduction

Primate feeding relies on the coordination of tongue and jawmovements and the precise

control of the generation of tongue and bite forces at varying distances of jaw depression (i.e.,

gape) during biting, chewing, and swallowing. Bite force control is important for intra-oral

breakdown of food into a bolus that is safe to swallow and easy to digest while minimizing the

probability of tooth breakage and excessive tooth wear. Likewise, gape has to be controlled

to accommodate ingestion and manipulation of food by the lips, tongue, and teeth during

ingestion, chewing, bolus transport and swallowing. Indeed, the wide range of disorders

and dysfunctions affecting the feeding system pose significant challenges for human health

and enjoyment of life, including tooth loss, masticatory dysfunctions, dysphagia, and pain

states such as temporomandibular disorders and trigeminal neuralgia (Hamdy et al., 1998;
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Sessle et al., 2005; Khedr and Abo-Elfetoh, 2010; Nguyen et al.,

2011; Murdoch et al., 2012; Trulsson et al., 2012). A part of the

cerebral cortex termed the orofacial sensorimotor cortex (OSMcx)

is crucial for controlling orofacial sensorimotor functions, yet

despite the importance of feeding behavior for human health

and well-being, little is known about the role of the OSMcx

in the control of bite force and gape. This limited knowledge

hampers our ability to leverage the full potential of OSMcx

for the development of therapies and treatments and also

constrains our understanding of the role of OSMcx in feeding

system evolution.

The OSMcx, which includes the primary motor (MIo), primary

somatosensory (SIo), and cortical masticatory (CMA) areas, plays a

crucial role in the control of complex oral sensorimotor behaviors

so as to effect functionally critical, coordinated movements such

as those associated with feeding and speech (Sessle et al., 2005;

Sessle, 2011; Avivi-Arber and Sessle, 2018). Several decades of

research using intracortical microstimulation (ICMS), receptive

field (RF) mapping, multi-electrode array recordings, and ablative

procedures suggest that these three areas play important roles in

these behaviors. For example, ICMS in MIo, SIo, or CMA can

evoke relatively simple movements of orofacial muscles (e.g., jaw

opening, tongue protrusion) as well as more complex movements

such as chewing and swallowing (Huang et al., 1988, 1989b; Martin

et al., 1997, 1999; Hatanaka et al., 2005; Laurence-Chasen et al.,

2018). Neurons in MIo and SIo have been shown to modulate their

activity during feeding and performance of orofacial tasks such as

the generation of tongue-protrusive force or bite force, to encode

the direction and magnitude of tongue-protrusive force, to form

coherent networks within and across these areas in a reciprocal

manner, and to undergo learning-induced plasticity (Murray and

Sessle, 1992a,b; Lin et al., 1994; Arce et al., 2013; Arce-McShane

et al., 2016, 2019; Liu et al., 2019). Many of these neurons have

orofacial mechanosensitive RFs and the sensory inputs from their

RFs are used to modulate bite and tongue forces (Huang et al.,

1988, 1989b; Lin and Sessle, 1994; Toda and Taoka, 2002, 2004;

Cerkevich et al., 2014). In addition, a role for OSMcx in orofacial

motor control is indicated by studies showing that reversible cold-

block or ablation of OSMcx disrupts various elements of feeding

performance (Luschei and Goodwin, 1975; Murray et al., 1991; Lin

et al., 1993, 1998; Narita et al., 2002; Yamamura et al., 2002; Yao

et al., 2002).

While these findings in animals indicate an important role

for OSMcx in the control of feeding and related orofacial motor

behaviors, it is unknown how functionally diverse neuronal

populations in three different cortical areas (i.e., MIo, SIo,

and CMA) might encode gape and bite force simultaneously

because the activity from these areas has not been recorded

simultaneously when both bite force and gape parameters are

controlled. Here, we present novel data on the role of OSMcx of

macaque monkeys in the control of these two critically important

behavioral variables in mammalian feeding. The aim of this

study was to elucidate how individual neurons and population

of neurons in multiple regions of OSMcx differentially encode

bite force and gape when subjects (Macaca mulatta) generated

different levels of bite force at varying static gapes during a

biting task.

Materials and methods

For reference, Table 1 provides a list of acronyms used in

this paper.

Subjects

Data were collected from two adult female rhesus macaques

(Macaca mulatta), H (7.5 kg) andM (5.8 kg). While the craniofacial

features of females tend to be smaller than males, there is no

evidence that we know of that would indicate a neurophysiological

difference in orofacial function between males and females.

Likewise, menstrual conditions were not controlled due to

unknown effects of menstruation on activity of neurons in the

orofacial sensorimotor cortex. All protocols were approved by

the University of Chicago Animal Care and Use Committee and

complied with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals.

Behavioral task

The two naïve monkeys were trained to perform a behavioral

task that approximates a natural incisor biting behavior requiring

the generation of different levels of bite force at varying static gapes

(i.e., jaw depression distances) (Figure 1A). The bite force plates

were computer-controlled to open at one of three gapes prior to

the start of a behavioral trial (Figure 1B). The bite plates remained

in that configuration for the entire length of the trial. Strain gauges

bonded to the bite plates recorded the bite force produced by the

teeth engaging the bite force plate. Nine combinations of required

bite force (3 levels) and gape (3 distances) composed the nine

different trial types (Figure 1C and Supplementary Figure S1A).

The presentation order of gapes was randomized in subject M and

blocked in subject H. In blocked presentation, three force levels

were randomly paired with a single gape before moving on to

another gape. Subjects were rewarded with juice after holding the

TABLE 1 List of acronyms used.

AUROC Area under the receiver operating

characteristic curve

CMA Cortical masticatory area

dPCA Demixed principal components analysis

FO Force onset

GLM Generalized linear model

ICMS Intracortical microstimulation

MIo Primary motor

OSMcx Orofacial sensorimotor cortex

PETH Peri-event time histogram

RF Receptive field

SE Standard error

SIo Primary somatosensory
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FIGURE 1

Behavioral task and performance. (A) Diagram of the bite force task apparatus. (B) Sequence of events in a trial of the bite force task. The light green

square represents the force cursor while the brown and green boxes represent the base and force targets. The animals were presented with one of

three target positions at one of three gape distances in each trial. (C) Example bite force profiles of each trial type based on gape and required bite

force level (shaded area covers ± 0.25V from target line). There was a minimal hold time at the target (0.1 s), allowing the subject to go past the

required force level. Shown for subject H as mean bite force and ± 1 SE (shaded area), across all trials of a trial type, during ±1 s relative to force

onset (FO). G1, G2, G3 correspond to increasing gape distances whereas F1, F2, F3 correspond to increasing levels of required bite force.

force level at the target. A detailed description of the task flow can

be found in the Supplementary material.

Electrophysiology

Under general anesthesia, each subject was chronically

implanted with silicon-based arrays of 64 or 100 microelectrodes

(BlackRock Microsystems, Salt Lake City, UT) in MIo, SIo and

CMA of the left hemisphere (Supplementary Figure S1B). The

microelectrodes on the array were separated from their immediate

neighbors by 400µm and their length was 1.5mm for arrays

implanted in MIo and 1.0mm for SIo and CMA. Implantation

sites were verified based on surface landmarks and exhibited

movements of the tongue or fingers evoked by monopolar surface

stimulation of MIo (50Hz, 200 µs pulse duration, 2–5mA) during

the surgical procedure. Signals from both arrays were amplified

with a gain of 5,000, simultaneously recorded digitally (16-bit) with

a sampling rate of 30 kHz and hardware-filtered using a high-pass

filter fixed at 1Hz first, followed by a low-pass filter with 7.5 kHz

cut-off (Grapevine, Ripple LLC, Salt Lake City, UT). Spike data

TABLE 2 Number of neurons included in GLM and dPCA analyses.

Subject M Subject H

MIo 70 123

SIo 62 64

CMA 41 78

streams were digitally filtered with a high-pass filter at 250Hz.

Spike waveforms were stored and sorted offline using Offline Sorter

(Plexon, Dallas, TX). Data from array channels with no signal or

with large amounts of 60Hz line noise were excluded.

Data analysis

Two datasets, one from each subject, were used in the main

analyses (H: 20160209; M: 20161020). Spiking activity of all

individual neurons recorded simultaneously from MIo, SIo, and

CMA in one session was used in all neural analysis (Table 2).
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Generalized linear model
To determine the relative importance of bite force and static

gape in predicting the firing of neurons and to compare encoding

properties among OSMCx areas, we used GLM to predict the time-

varying spiking activity of each neuron. The GLM approach allows

us to measure how well a model predicts the probability that a

neuron fires a spike in a small sampling window (4ms) based on

different combinations of extrinsic covariates (i.e., bite force and

gape) and intrinsic covariates (i.e., spike history). The time window

used in the analysis was±500ms relative to force onset (FO).

Extrinsic covariates

For gape, we used the gape distances which were adapted to the

subject’s mandibular length (H: 11, 14, 17mm; M: 8, 11, 14mm).

For bite force, we included bite force magnitude at eight different

time lags from −156ms (i.e., force leads spikes by 156ms) to

208ms (i.e., force lags spikes by 208ms) in 52ms steps relative to

the spike sampling window. We used multiple time lags because

multi-lag GLM models using kinematic features have been shown

to provide higher predictive power than models that include only

a single, optimal lag (Hatsopoulos et al., 2007; Saleh et al., 2010,

2012; Takahashi et al., 2017). We also included an interaction

term for gape and bite force to evaluate whether encoding of the

interaction between these two features was better than encoding

of each feature separately. Thus, we used a total of 17 input

features (1 gape, 8 forces, 8 interactions between gape and force)

as extrinsic covariates.

Spike history

The current spiking activity of a neuron might also be

affected by its own spiking activity in the past due to intrinsic

physiological properties such as absolute and relative refractory

periods. Thus, we included the neuron’s spike history as an

intrinsic covariate. To account for short (16ms), medium (44ms),

and long (108ms) time scale effects of the neuron’s own spike

history, we filtered binary spike trains with raised cosine basis

functions (Supplementary Figure S2). A logit link function was

used to relate the logarithm of the firing intensity (which is

approximately equivalent to the spiking probability given the small

4ms spike-sampling window) to a linear combination of covariates,

expressed as:

log

[

pn (t)

1− pn (t)

]

= β0 +

J
∑

j = 1

βH
j H

j
(t)+

∑

βGG (t)

+

K
∑

k = 1

βF
k Fk(t − τk)+

K
∑

k = 1

βGF
k GFk(t − τk)

where pn (t) is the probability that neuron n fires a spike at time

t, β0 represents the baseline probability that the neuron will spike,

Hj (t) is the value of the j
th (of J) spike history timescale at time t,

G is the gape distance at time t, Fk (t − τk) is the bite force at time

t − τk, where τk is the k
th (of K) lead or lag time against the spike

time at t, and GFk(t− τk) is the interaction covariate at time t− τk,

and each covariate’s weight βH
j , βG, βF

k
and βGF

k
, respectively.

Assessing the relative importance of each covariate

We used different models based on the combination of input

features used to predict a neuron’s firing. The full model includes

all input features (bite force, gape, interaction, and the spike history

of the neuron) while the reduced models have up to three of the

input features removed (i.e., gape removed, bite force removed,

and both force and gape removed, only force, only gape, only

interaction, only spike history). To measure the goodness of fit

of the encoding model, we compared the area under the receiver

operating characteristic curve (AUROC) for ten folds of cross-

validated test data (i.e., 10 distinct sets of test trials that were not

used to build the model) against chance level (Hatsopoulos et al.,

2007; Truccolo et al., 2009; Saleh et al., 2010, 2012; Takahashi et al.,

2017).

Demixed principal components analysis
To investigate how activity of neuronal populations in MIo,

SIo, and CMA might distinguish between behavioral parameters,

we used dPCA (Kobak et al., 2016) to decompose the dependencies

of the population activity, X, into components of time-dependent

and task-dependent parameters: the task-independent parameter

of time, XT (for activity related to the progression through the

behavioral trial), the task-dependent parameters of bite force, XF ,

and gape, XG, and the interaction between them, XI :

X = XT + XG + XF + XI + Xnoise

where X is the full data matrix with N rows of neurons

which contain smoothed spike train of the nth neuron for all

task conditions and all trials. XT , XG, XF , XI are the linear

decompositions (i.e., components) of X into parameter-specific

averages. dPCA then finds separate decoder (D) and encoder (F)

matrices for each of these terms, ϕ , by minimizing the loss

function: LdPCA =
∑

ϕ

∥

∥Xϕ − Fϕ DϕX
∥

∥

2
. To assess whether the

condition tuning of individual dPCA components was statistically

significant, we implemented the decoding method provided in the

dPCA Toolbox (Kobak et al., 2016) where classification accuracy

was measured for each time point of a behavioral trial by using the

decoding axes of the first components of each marginalization, i.e.,

the first component of bite force was used to classify force levels, the

first component of gape to classify gapes, and the first interaction

component to classify all nine trial types. The dPCA Toolbox uses

cross-validation to measure time-dependent classification accuracy

and a shuffling procedure to assess classification accuracy that is

significantly above chance. We used 1,000 iterations of stratified

Monte Carlo leave-group-out cross-validation wherein on each

iteration, one trial for each neuron in each condition was held out

to form the test set and the remaining trials to form a training set.

We used 500 iterations for the shuffling procedure. Default number

of iterations for cross-validation and shuffles used in Kobak et al.

(2016) was 100. To verify that the number of iterations did not affect

the acceptance limits significantly, we also performed 100 cross-

validation with 10,000 shuffling iterations for the CMA dataset

of monkey H which took about 12 h to run on a 2.9 GHz on

a quad-core. The chance level was slightly higher in the 10,000

shuffles compared to the chance level obtained from 500 shuffles.

In both cases, classification accuracies were not above chance levels.

Based on this result, we think that using 1,000 cross-validation

and 500 shuffling iterations was sufficient to estimate chance level.
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FIGURE 2

Modulation of spiking activity of single units in MIo, SIo, and CMA during task performance. (A–C) Peri-event time histograms (PETHs and ±1 SEM

smoothed by a 50-ms Gaussian kernel) of individual gape-related neurons simultaneously recorded in MIo, SIo, and CMA, respectively. To illustrate

whether a neuron is gape-related or force-related, trials used to plot the PETHs were grouped according to gape (top row, pooling over force levels)

or required bite force levels (bottom row, pooling over gape distances). For example, in (A) MIo gape neuron shows modulation of peak activity with

di�erent gape distances (top row) but not with di�erent levels of force (bottom row). (D–F) As in (A–C), but for neurons whose spiking activity varied

more with the varying degrees of bite force than gape.

The mean classification accuracy (from 1000 repetitions of cross-

validation) per time bin (50ms) was deemed significant when the

corresponding actual mean classification accuracy exceeded all 500

shuffled decoding accuracies. This would, therefore, be equivalent

to a p-value of 0.002.

We used the nonparametric Kruskal-Wallis one-way analysis

of variance and the Bonferroni test for post-hoc multiple paired

comparison with significance level set at p < 0.05, unless otherwise

noted. For reporting p-values, we used either the equality sign for

exact values (e.g., p = 0.01) and the inequality sign when the p-

value was rounded to the next whole number or when reporting

the highest value for a group of tests for brevity (e.g., p < 5x10−8).

All other analyses were performed using built-in and user-defined

functions in Matlab (Mathworks, Inc.).

Results

We trained two naïve monkeys to perform an incisor biting

task that required them to generate different levels of bite force

at varying static gapes to receive a juice reward (Figure 1C and

Supplementary Figure S1A). We recorded the bite force generated

by the subjects while simultaneously recording neuronal responses

from the OSMcx. Spiking activity of single neurons in MIo, SIo,

and CMA was dynamically modulated during task performance;

neurons exhibited increases and decreases in firing rates relative to

the onset of bite force. Activity of some task-modulated neurons

exhibited more robust tuning to gape than to bite force (compare

Figures 2A–C, top vs. bottom row) while others showed activity

that varied more with bite force than with gape (Figures 2D–F,

bottom vs. top row).

Encoding model

To determine the relative importance of bite force and static

gape in predicting the firing of neurons and to compare encoding

properties among these three cortical areas, we used GLM to

predict the time-varying spiking activity of each neuron. The GLM

approach allows us to measure how well a model predicts the

mean spike count in a small time-window based on a set of input

features that included extrinsic covariates (i.e., bite force, gape,

and their interaction) as well as intrinsic, spike history covariates

(Supplementary Figure S2, see Methods). Predictive power was
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assessed by computing the AUROCs on cross-validated test data.

Figures 3A, B provides an example illustrating the actual firing rates

of a MIo neuron, its predicted rates based on a full encoding model

that included all input features, and the AUROC for a specific

cross-validation of test trials for this neuron. The encoding model

predicted the spiking activity of this neuron with a mean AUROC

value of 0.84 across all ten runs of cross-validated test trials.

We then compared the predictive power (using AUROC) of a

full GLM model having all covariates with reduced models having

only a subset of covariates. On average, we found that all input

features used in all encoding models, full or reduced, were able

to predict spiking activity of most neurons in MIo, SIo, and CMA

significantly better than chance (Wilcoxon signed-rank test, highest

p-values given for all models used, H: MIo: p < 4x10−20; SIo: p

< 1x10−11; CMA: p < 8x10−14; M: MIo: p < 2x10−12; SIo: p <

2x10−11; CMA: p < 5x10−8). However, the separate and combined

ability of bite force, gape, and spike histories to predict the spiking

of neurons differed; AUROCs were significantly different across the

various encodingmodels, with the full encodingmodel showing the

best performance and the gape-only model exhibiting the poorest

performance (Figures 3C, D, Kruskal-Wallis test, H: MIo: p =

4x10−44; SIo: p = 5x10−14; CMA: p = 4x10−25; M: MIo: p =

2x10−8; SIo: p= 6x10−9; CMA: p= 0.003).

We then sought to determine the relative importance of an

input feature by comparing the performance of encoding models

with and without the input feature in question. If an input feature

contributes significantly to an encoding model, we would expect

a model not to perform as well when that feature was removed.

Figure 4 illustrates the degree of degradation of the predictive

ability of an encodingmodel when either force or gape was removed

by plotting each neuron’s AUROC against the encoding model

that included both gape and force (intrinsic covariates were not

included in the model for this analysis). When removing the force

feature, a majority of neurons clustered above the unity line due

to significantly higher AUROCs in the combined force and gape

model, indicating that excluding force from the encoding model

degraded the model’s predictive ability (Figures 4A–C, Wilcoxon

signed-rank test, H: MIo: p < 5x10−20; SIo: p= 2x10−9; CMA: p=

6x10−12; M: MIo: p = 1x10−8; SIo: p = 1x10−6; CMA: p = 0.002).

This was not the case when gape was removed, as shown in most

neurons clustering along the unity line (Figures 4D–F, Wilcoxon

signed-rank test, both subjects, all areas, p > 0.10). Thus, bite force

was a more accurate predictor of spiking activity than gape. It

may be argued that the difference in the predictive value of bite

force and gape could be attributed to having bite force as a time-

varying parameter of 8 features (i.e., 1,000ms, 4-ms bins, 8 lags),

while gape was given as a single, constant feature for each time

bin. To verify this, we ran the GLM analysis using only one bite

force value recorded at 100ms after force onset and spike activity

at one of six time points after force onset (60, 80, 100, 120, 140,

and 160ms). Altogether, we built six GLM models per neuron.

We found that in 3–4 out of 6 time points evaluated, there was

a significant degradation of prediction accuracy when force was

removed and not when gape was removed in subject H (Kruskal-

Wallis, MIo and SIo: p < 0.05) and in subject M (Kruskal-Wallis,

CMA: p < 0.05). When not statistically significant, the trend was

toward a higher predictive value of force vs. gape. Thus, the higher

predictive ability of force was not completely biased by the way

extrinsic features were used in the encoding model, suggesting that

predictive power might be dependent on the movement parameter

that drove successful performance of the task at hand.

We also considered the possibility that the interaction between

gape and forcemight contribute significantly tomodel performance

beyond the combined contribution of gape and bite force. However,

our results did not show any evidence for this; the model that

included force, gape, and their interaction performed similarly to

a model that excluded their interaction (Figures 3C, D, compare

1 vs. 2, Wilcoxon signed-rank test, both subjects, all areas, p >

0.10). Lastly, the full encoding model, that included force, gape,

their interaction, and spike history, outperformed encodingmodels

that did not include spike histories (Wilcoxon Paired sign rank test,

H: MIo: p = 5x10−22; SIo: p = 8x10−12; CMA: p = 2x10−14; M:

MIo: p= 3x10−12; SIo: p= 8x10−12; CMA: p= 1x10−7).

While bite force accounted for most of the information

that reduced encoding models used to predict spiking of

individual neurons, the full encoding model that includes all

input features (i.e., spike history, bite force, gape, and the

interaction between them) outperformed all other reduced

encoding models. Notwithstanding, the results indicated that

each input feature carried distinct information capable of

predicting spiking activity of neurons in all three areas of

OSMcx as shown by reduced encoding models performing above

chance level.

Distribution of neurons encoding bite force
or gape

We then evaluated whether there was any difference in the

proportion of neurons encoding bite force compared with neurons

encoding gape in the three studied areas of OSMcx. We identified

“force-” or “gape-related” neurons as neurons whose AUROCs

in the force or gape only encoding model, respectively, were

significantly higher than chance level (Wilcoxon signed-rank test,

p < 0.05). Force-related neurons, comprising a mean of 91% (SE

4%) of the recorded neuronal population across all areas and

animals, were predominant over gape-related neurons (58%, SE

4%) (Figure 5, X2 test, H: MIo: p = 1x10−16; SIo: p = 5x10−6;

CMA: p = 6x10−11; M: MIo: p < 5x10−8; SIo: p < 2x10−8; CMA:

p < 0.09). There were no significant differences in the proportion

of either force- or gape-related neurons between any two cortical

areas (Chi-squared test, significance at p < 0.017 after correction

for multiple comparisons, i.e., MIo vs. SIo; MIo vs. CMA; SIo vs.

CMA, H: all p > 0.10; M: all p > 0.04).

Comparison of encoding model
performance across cortical areas

To determine whether MIo, SIo, and CMA differ in the

encoding of bite force and gape, we evaluated differences in the

predictive ability of encoding models that included force only,

or gape only, or both force and gape across the three areas.

Frontiers in SystemsNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1213279
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Arce-McShane et al. 10.3389/fnsys.2023.1213279

FIGURE 3

Performance of encoding models. (A) Actual firing rates of an example neuron vs. its predicted firing rates based on the full encoding model. (B) The

full model’s goodness of fit was quantified using the AUROC on a cross-validated test data for the neuron shown in (A). Full model mean AUROC =

0.84. Dashed line denotes chance level. (C, D) Box plots of AUROC values from the population of neurons recorded from MIo, SIo and CMA (see

Table 1 for N) are shown for each encoding model and animal. AUROC values are taken to be the mean across the 10-folds of cross-validation

performed per neuron.

Using models with bite force and gape, we found a main effect

of cortical area, where the activity of MIo was predicted better

than the activity in SIo in both animals (Figure 6A, Kruskal-

Wallis test, H: p = 6x10−9; M: p = 0.0007, post-hoc paired

comparison with Bonferroni correction MIo vs. SIo, H: p <

0.0001, M: p < 0.001) but not any better than activity in CMA

(Figure 6A, post-hoc MIo vs. CMA, p > 0.10). When comparing

encoding models that had bite force as the only predictor for

spiking, the predictive ability of force in MIo was better than

SIo but not any better than CMA (Figure 6B, Kruskal-Wallis

test, H: p = 5x10−10 post-hoc MIo vs. SIo, CMA vs. SIo, p <

0.0001; M: p = 0.017, post-hoc MIo vs. SIo, p < 0.05, CMA

vs. SIo, p > 0.10; both subjects: post-hoc MIo vs. CMA, p >

0.10). When encoding models had gape as the only predictor,

a main effect of cortical area was observed in subject H where

the model’s predictive performance was best in CMA (Figure 6C,

Kruskal-Wallis test, H: p = 0.0016, post-hoc CMA vs. MIo, p

< 0.01, CMA vs. SIo, p < 0.05). No significant differences

between cortical areas were found in subject M (Kruskal-Wallis

test, p= 0.055).

Relative importance of temporal lags of
bite force

Since we found that bite force is more strongly encoded than

gape in all three cortical areas, we next evaluated the impact

of temporal lags in bite force (from −156 to 208ms relative

to spiking) on predicting spiking of neurons in relation to bite

force. For this analysis, we used the absolute values of the β

coefficients of the temporal lags of bite force from the encoding

model with force as the only predictor. Only β coefficients that

were significantly different from zero were included (t-Test, p <

0.05). For each neuron, we found the time lag that was associated

with the largest β coefficient and computed the distribution

of time lags across neurons for each cortical area (Figure 7).

Although the distributions of time lags were quite broad, there

were important differences across cortical areas. The median

time lags for MIo were 52 and 26ms for subjects H and M,

respectively, indicating that force lagged spiking and consistent

with the view that MIo drives force generation. In contrast, the

median time lags for SIo were 0ms for both subjects. In CMA,
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FIGURE 4

Comparison of model performance at an individual neuron level. (A–C) Relation between AUROCs of the joint force and gape model vs. the reduced

model when force was removed. Each circle corresponds to a neuron’s AUROCs. Shown for each animal and for MIo, SIo, and CMA, respectively (see

Table 1 for N). AUROCs above the unity line (dashed line) denotes higher AUROCs in the joint vs. reduced model. (D–F) As in (A–C) but comparing

AUROCs of the reduced model of when gape was removed.

the results were inconsistent across animals suggesting a more

heterogeneous temporal relationship between force generation and

neural responses (H:104ms, M: 0 ms).

Relative importance of spike history
timescale to spiking activity

The β coefficients for the most immediate spike history

(16ms) were higher than β coefficients for spikes that occurred

further in the past (44 or 108ms) for all areas in both animals

(Supplementary Figures S3A, B, Kruskal- Wallis, H: all p< 2x10−5,

M: all p < 3x10−5, post-hoc multiple comparison with Bonferroni

correction, p < 0.05). This indicates that immediate past history

outweighs the other timescales in the ability to predict spiking of

neurons in OSMcx.

Population encoding of behavioral
parameters

While encoding models using GLMs showed that bite force

more accurately predicted the individual neuron’s spiking than

did gape, our simultaneous, multi-site recordings allowed us to

examine how activity at the population level in MIo, SIo, and

CMA represents bite force and gape. Thus, we investigated how

activity of neuronal populations in MIo, SIo, and CMA might

distinguish between these behavioral parameters. Here, we used a

latent variable model, dPCA (Kobak et al., 2016) to decompose the

dependencies of the population activity into a task-independent

parameter of time (for activity related to the progression through

the behavioral trial), and task-dependent parameters of bite force

and gape, and the interaction between them. This approach was

FIGURE 5

Proportion of neurons encoding bite force or gape. Proportion of

neurons with AUROCs that were significantly higher than chance

level in the reduced force and gape models. Only neurons whose

models converged in at least 6 folds of cross-validated test data

were included. Shown for each cortical area and subject [MIo:

N(forceonly,gapeonly) = (H:116/121 57/121; M:63/68 33/68); SIo: N =

(H:59/63 36/63; M:50/59 19/59); CMA: N = (H:76/77 40/77; M:29/38

21/38)]. Error bars indicate ±1 SEM (based on a binomial distribution

assumption).

used to capture the structure of the population-wide activity

patterns, i.e., latent activity. Figure 8 illustrates the cumulative

variance in the population signal accounted for by demixed

principal components (dPCs), i.e., neural modes, and the variance

accounted for by individual task parameters for each cortical area.

Over 70% of the variance was accounted for by 7–13 dPCs in

subject H (Figure 8A) and 6–20 dPCs in subject M. The first five

dPCs showed very good demixing of task parameters as most of the

component variance was explained by a single task parameter, such
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FIGURE 6

Performance of encoding models di�ered across cortical areas. (A) Distribution of significant AUROCs for the joint force and gape encoding model

in MIo, SIo, and CMA, shown separately for each animal [MIo: N(H,M) = (121; 68); SIo: N = (63; 59); CMA: N = (77; 38)]. Solid and dashed lines denote

median AUROCs for subjects H and M, respectively. (B, C) As in (A) for AUROCs for the reduced force and gape models [MIo: N(H,M), (force only,

gape only) = (116 57; 63 33); SIo: N = (59 36; 50 19); CMA: N = (76 40; 29 21)].

FIGURE 7

Preferred temporal lags of bite force di�ered across cortical areas. Distribution across neurons of time lags associated with maximum coe�cient for

force in each cortical area and subject. Colored vertical lines indicate median values of each distribution [MIo: N(H,M) = (116; 52); SIo: N = (59; 48);

CMA: N = (65; 26)].

as the time-related activity for the first dPC or bite force for the

second dPC in SIo (Figure 8B center).

The task parameter that explained most of the variance differed

across cortical areas; for both animals, the variance explained by

the condition-independent component was highest in MIo. We

also observed that the time-related activity in all three areas was

very prominent in subject H (45–60%) compared to 8–27% in

subject M (pie charts in Figures 8B–D). The variance explained
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FIGURE 8

Neural variance accounted for by demixed principal components. (A) Comparison of cumulative variance explained by PCA and dPCA. Shown for the

first 15 components and for each cortical area separately. Data from subject H. (B, C) Bar graphs illustrating the proportion of variance accounted for

by each task parameter (color) corresponding to individual dPCs in subjects H and M, respectively. Single-colored bars depict complete demixing. Pie

chart illustrates the proportion of variance (%) explained by task parameters. Numbers in parenthesis denote total number of neurons used in the

analyses. Shown for each cortical area. (D) Across-area comparison of the proportion of variance (%) explained by each task parameter shown for

both subjects.

by static gape was higher in CMA than in SIo and in MIo for

both animals (Figure 8D). The difference across cortical areas was

pronounced in subject M, where randomized design was used, as

the explained variance in CMA was nearly triple that in MIo (MIo:

20%, SIo: 36%, CMA: 57%). Variances accounted for by gape in

all three areas were substantially higher in subject M (20–57%)

than in subject H (7–10%). The variance accounted for by bite

force was highest in SIo for subject H, which was almost twice

the total variance explained by bite force in MIo (Figure 8D).

Lastly, the variance explained by interaction between gape and

force in all cortical areas ranged between 15–32% across subjects,

suggesting a relative importance of the coordinated control of these

two parameters (Figure 8D). Similar results were also found when

dPCA was performed on a subset of trials and using two other

datasets (Supplementary Figure S4).

In all cortical areas, latent activity for static gape and bite

force exhibited separation by trial types. Figure 9 illustrates the

linear projections of population latent activity in MIo, SIo, and

CMA corresponding to dPCs with the highest explained variance

for each of the task parameters. Latent activity for gape distances

exhibited varying degrees of separation across areas (Figures 9C,

D). In subject M, where higher explained variances for static gape

Frontiers in SystemsNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1213279
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Arce-McShane et al. 10.3389/fnsys.2023.1213279

FIGURE 9

Latent activity of leading demixed principal components of task parameters. (A, B) Projections of population activity onto the leading dPCs of

condition-independent parameter of time in subjects H and M, respectively. Each subplot shows 9 lines corresponding to 9 trial types for each

cortical area. The component number and corresponding explained variance is shown above each subplot. (C–H) As in A-B, for gape, bite force, and

the interaction between gape and force. Insets show zoomed periods around force onset when activity related to trial types show clear separation or

overlap.

were observed in SIo and CMA, latent activity was well-separated

by gape levels and exhibited increasing activity with increasing

gape levels. This was not observed in subject H where explained

variances for gape were low across all cortical areas. Activity of

the lead dPC in MIo separated only between minimal gape and

medium/wide gape (Figure 9D), as also found in all cortical areas

in subject H (Figure 9C). Across areas and animals, latent activities

corresponding to different bite force levels were also separated,

although tuning to bite force levels was observed at varying strength

and times relative to force onset (Figures 9E, F). Separation of

latent activities by force levels was more pronounced in MIo, with

maximal separation occurring at force onset in both subjects. Both

SIo and CMA exhibited distinct activities between two force levels

only. Lastly, latent activity of dPCs corresponding to the interaction

between gape and bite force showed varying degrees of separation at

different times relative to force onset (Figures 9G, H). For example,

trial types were more separated around 0.3 s prior to force onset

but became more overlapping after force onset (Figure 9G inset).

The activity of interaction components appeared complex, having

distinct and overlapping activity patterns for certain gape-force

combinations; low bite force generated at gape distances 1 and 2

had activity patterns opposite to high bite force applied at these

gape distances (Figure 9H inset). A subset of neurons that carry

both gape and bite force informationmay underlie the coordination

between these features.

The latent activity patterns of dPCs provided useful

information about the modulation of population activity

relative to behavioral events and task parameters, motivating us to

evaluate the performance of dPCs in decoding gape and force at a

single-trial level. Using the first dPC for each task parameter as a

fixed linear classifier, we evaluated the accuracy of classifying gape

and force levels. Classification of gapes was significant in subject

M only. Figure 10A shows significant classification of gapes ±1 s

relative to force onset in SIo and CMA and in shorter periods in

MIo. In the case of bite force, classification accuracy was significant

in all areas for subject H for most periods and in MIo and SIo

for shorter periods in subject M (Figures 10B, C). Classification

accuracy using interaction components did not show any time

period with significant performance.

Discussion

In this study, we investigated how individual neurons and

populations of neurons in multiple regions of OSMcx differentially

encode bite force and gape when subjects generated different levels
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FIGURE 10

Classification performance of bite force and gape components. (A, B) Classification accuracies (blue line) of linear classifiers given by the first gape

dPC in subject M and H, respectively, shown for each OSMCx area. Shaded gray area correspond to the distribution of classification accuracies

expected by chance (solid gray line) as estimated by 500 iterations of shu	ing procedure. (B, C) As in A but using the first bite force dPC in subjects M

and H, respectively.

of bite force at varying static gapes during a biting task. Our

results add new insights to our understanding of sensorimotor

control of oromotor behavior by showing that in the biting task,

(1) the activity of individual neurons in MIo, SIo, and CMA

were strongly tuned to bite force compared to static gape, (2)

the simultaneous encoding of bite force and gape was better in

MIo and CMA neurons, compared to SIo neurons, and (3) the

population activity revealed robust tuning to both static gape and

its interaction with bite force, that was not evident from the single-

neuron encoding model.

Spiking activity of individual neurons in
OSMcx is better predicted by bite force
than by gape

Past studies have demonstrated that MIo and SIo neurons

modulate their activity to changes in bite force, jaw position, and

movement (Lund and Lamarre, 1974; Hoffman and Luschei, 1980;

Murray and Sessle, 1992a; Lin et al., 1994). In the current study,

simultaneous recording in MIo, SIo, and CMA while subjects

performed a biting task at varied combinations of gape and bite

force levels allowed us to determine the relative importance of

these task parameters in predicting the firing of neurons and

to explore how these areas might assume diverse roles in the

cortical control of a functionally important oromotor behavior.

We demonstrated that when subjects performed a biting task,

neurons in each of the three areas encoded bite force more strongly

than gape (see Figure 4) and that the force-related neurons were

more predominant than the gape-related neurons. This was true

regardless of the sequence used in presenting trials (i.e., blocked vs.

randomized gapes). A possible explanation is that a larger portion

of the cortical space was used because of a higher complexity in

the task that involved dynamic control of varying bite force levels

for successful performance, whereas gape remained static and was

not actively controlled by the subject to receive the reward. The

different control requirements for bite force and gape influence

Frontiers in SystemsNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1213279
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org


Arce-McShane et al. 10.3389/fnsys.2023.1213279

how muscles are activated, and which sensory information is more

relevant. Because the task does not require voluntary control of

jaw depression (opening), activation of jaw depressors (anterior

digastric, mylohyoid, and inferior head of the lateral pterygoid)

is not expected because the lower jaw is passively depressed to a

predetermined static gape prior to the generation of the required

bite force. Instead, jaw elevators (masseter, temporalis, medial

pterygoid, and superior head of the lateral pterygoid) are expected

to be activated to produce the required force level that varies

during the trial. In this scenario, OSMcx neurons may be involved

in the selective excitation of jaw elevators and inhibition of jaw

depressors for the generation of varying bite forces (Hoffman

and Luschei, 1980; Moustafa et al., 1994). The OSMcx receives

information about the changing magnitudes of bite force and gape,

in part via thalamus. This information is derived from neurons

in the trigeminal mesencephalic nucleus and trigeminal ganglion

that innervate muscle spindles of masticatory muscles or the

mechanoreceptors of the periodontal ligaments of the teeth and

the temporomandibular joint (Larson et al., 1981, 1983; Huang

et al., 1989b; Lund and Kolta, 2006; Trulsson, 2007;Wang andMay,

2008). As sensory information on the position of the lower jaw

remains unchanged during bite force generation in this task, the

most critical sensory information for successful task performance is

the magnitude of applied bite force. In a task that requires changes

in jaw position, such as in chewing, OSMcx neurons may show

more robust tuning to gape as both muscles and afferents are

activated during dynamic gape changes.

The results have relevance to the understanding of

sensorimotor principles that span multiple domains, for example,

lifting a load at varying degrees of wrist/elbow extension (isotonic)

and subsequent isometric contraction to hold the load. Indeed,

our findings are consistent with previous findings reported in a

limb study in which static effects (i.e., encoding of hand position

when the hand is held static at the different targets) were compared

to dynamic effects (when the arm is moving to the targets) on

neuronal modulation in the motor cortex and area five of rhesus

macaques (Georgopoulos and Massey, 1985). In that study, they

showed that modulation of neurons during dynamic movement

was larger than that which would be expected if the hand were

positioned statically at each point in the path from the center

target to peripheral target. In our case, jaw gape is a static variable

whereas bite force is dynamic.

Gape-related activity is better represented
at the population level

Linear projections of population activity (i.e., latent activity)

using dPCA in MIo, SIo, and CMA revealed robust tuning to

gape and its interaction with bite force that was not apparent at

the level of individual neurons. Indeed, in subject M where gape

varied randomly trial-to-trial, the neural variance accounted for

by gape was double to triple that of bite force (see Figure 8D) and

single-trial decoding of gape distances was significantly higher than

chance (see Figure 10A), notwithstanding the poor predictive of

single neuron encoding models with only gape as the input feature

(see Figure 3D). It is of interest that the temporal dynamics of

the gape-related population activity revealed a cyclic or oscillatory

pattern (Figures 9C, D). These oscillations may be related to cyclic,

short-range jaw depression-elevation for bite force generation,

throughout the trial exhibited by subject M. Alternatively, the

cyclic pattern may be related to non-movement related factors

such as posture maintenance involving coactivation or reciprocal

inhibition of jaw-closing and jaw-opening muscles, similar to

postural control processes during limb movements (Humphrey

and Reed, 1983; Lacquaniti et al., 1997; Feldman, 2016; Heming

et al., 2016). In this context, the gape-related activity of OSMcx

neurons may set the postural state of the jaw to the appropriate

postural background for movement based on the expected sensory

and motor consequences of the interaction of jaw dynamics

and environmental factors on which bite force is generated and

fine-tuned to meet task demands. Thus, sensory and motor

systems are prepared for upcoming information from the external

environment as well as from internal biomechanical changes.

Similarly, randomization of gape on a trial-to-trial basis may have

increased the demand for attention and reduced the predictability

of task parameters, thus, diminished the ability to anticipate the

appropriate sensorimotor response.

One may ask how does the accurate classification of gape

emerge in population coding when individual neurons carry low

information about gape? While the predictive ability of gape was

weaker than bite force across individual neurons, some single

neurons in MIo, SIo, and CMA exhibited significant modulation

of spiking activity as a function of gape, as shown in the PETHs

in Figures 2A–C and in AUROCs >0.6 in Figures 4A–C, especially

in subject M. Encoding models of single neuron responses such as

GLM as used in our study did not account for the influence of other

neurons’ spiking activity/history on predicting a specific neuron’s

spiking activity. In contrast, the decoding method in dPCA uses

the decoding axes of the first dPCs as linear classifiers to decode

gape (or force), thus, taking in the weighted combinations of the

activity of all recorded neurons in a specific region, which are

also influenced by neurons from other regions. Population activity

analysis using dimensionality reduction techniques can capture

the underlying network connectivity as patterns of covariation

across connected neurons (Cunningham and Yu, 2014; Gallego

et al., 2017). Thus, the low information on gape at the level of

individual neurons vis-à-vis the accurate classification of gape

at the population level suggests that control of gape requires a

coordinated response from connected neurons.

Neuronal population encoding of task
parameters reveals possible
context-dependent modulation

Here we showed that the latent activity of populations of

neurons in MIo, SIo, and CMA discriminated between task

parameters, consistent with previous findings in other brain regions

(Kobak et al., 2016; Gallego et al., 2018). dPCA also allowed us

to capture features of population activity that were common or

diverse. All three OSMCx areas shared neural modes (dPCs) with

comparable task-independent, time-varying activation patterns

while accounting for population variance in varying proportions.
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In our study, the time-related activity was very prominent in

subject H (45–60%) compared to 8–27% in subject M. This was

not surprising as other studies reported similar values ranging from

26 to 86% (see Figures 3, 4 in Kobak et al., 2016 and Figure 4 in

Gallego et al., 2018). Moreover, we also found a substantial inter-

subject difference in the variance explained by gape; in subject

M, the explained variance for gape was more than double that

observed in subject H. While slight variations in the implantation

sites of the multielectrode arrays may be a contributing factor

(Supplementary Figure S1), we speculate that this effect is minor

as the proportions of force- and gape-related neurons were

comparable between subjects. Other factors that we are unable

to control or monitor, such as attention, motivation, or task

proficiency, may exert influence and explain the different results

between subjects. Alternatively, the higher explained variance for

gape in subject M and explained variance for time in subject H

may be attributed to the differences in task structure. The trial-

to-trial randomization of gapes vs. blocked trials of single gapes

may have a higher task complexity to regulate gape changes from

trial-to-trial. If so, this would suggest that task context might

adjust the contribution of relevant task parameters in determining

the population activity, thus serving as population encoding of

differing contextual information for similar movement topologies,

i.e., generating bite force at varying gapes. The results are consistent

with previous findings showing context-dependent modulation of

cortical encoding during texture discrimination in task vs. no-task

conditions and grasping behavior with regular vs. irregular ladder

wheels (Jiang et al., 2018; Omlor et al., 2019).

Diverse functions of orofacial cortical
regions

Neuronal activity patterns, receptive field (RF) features,

properties of evoked rhythmic jaw movements, and cortical effects

of ablations or reversible cold blocks differ across these three

areas of the OSMcx (Luschei and Goodwin, 1975; Huang et al.,

1988, 1989a; Murray et al., 1991; Lin et al., 1993, 1998; Martin

et al., 1999; Narita et al., 2002; Yamamura et al., 2002; Yao et al.,

2002; Hatanaka et al., 2005; Arce et al., 2013; Arce-McShane

et al., 2014, 2016). Our results demonstrate that MIo, SIo and

CMA are all involved in the control of bite force and static

gape but differ quantitatively in their representation of these two

parameters. While individual neurons in all three cortical areas

encoded bite force more strongly than static gape, MIo and CMA

were better than SIo in predicting spiking activity based on bite

force. The similarity between MIo and CMA may be related to

anatomical overlap between borders of lateral MIo and CMA.

The differences between cortical areas are unlikely to come from

differences in RF properties as the RFs of neurons in all three

areas are similar in having bilateral representations, although they

are predominantly contralateral in SIo (Huang et al., 1988, 1989b;

Hatanaka et al., 2005; Sessle et al., 2005). Thus, their difference

may reflect differing functions with regards to motor- vs. sensory-

related signals as well as density of network connections with other

brain regions. For example, in addition to inputs from SIo, relevant

sensory inputs also reach MIo and CMA via thalamo-cortical

or cortico-cortical pathways. These findings point more to the

role of SIo in modulating these types of behavior rather than

generating them. The better representation of gape in CMA at

the population level may be related to the involvement of CMA,

which includes the lateral zone of MIo (Huang et al., 1989b;

Martin et al., 1999; Hatanaka et al., 2005), in both rhythmic jaw

movements as well as more elemental jaw-opening movements,

all of which involve changes in gape. Moreover, the distinctive

patterns of evoked rhythmic jaw movements described in previous

studies suggest a role for distinctive masticatory patterns that

can be attributed to input-output organization in these three

OSMcx areas. Cortico-striatal and cortico-tegmental projections

differ between MIo and CMA but have similar thalamo-cortical

connections (Hatanaka et al., 2005). Further studies are required to

determine whether the diverse functions of these three areas could

be more pronounced during the different stages of feeding behavior

wherein distinctive masticatory, tongue, and swallowing patterns

are naturally generated.

Limitations of the study

(1) Since the experimental paradigm is limited to static gape

during an incisor biting task, our conclusions do not extend

to cortical representations involved in biting behavior involving

more posterior teeth or in chewing behavior that is characterized

by active jaw movements that accompany bite force generation.

Nevertheless, static gape does characterize certain forms of natural

feeding, such as when one bites into a hard substance such as

nuts or carrots, or other behaviors such as teeth clenching. While

a full characterization of gape encoding would require dynamic

jaw movements, this study provides an important first step in

investigating simultaneous encoding of bite force and gape in

three cortical areas and for future studies that involve complex

and dynamic motor tasks encompassing transitions from static

jaw postures to jaw movement. (2) The population results showed

an enhanced encoding of static gape and its interaction with

bite force in only one subject, which we attribute primarily to

the randomization in the presentation of gape trials. Further

studies are required to investigate the effect of the complexity

of task requirements and trial presentation on the differential

encoding of bite force and gape at the level of individual neurons

and populations.

Conclusion

Here, we investigated the cortical representations of bite force

and gape by individual neurons and large populations of neurons

across connected motor and somatosensory areas in OSMcx. We

showed that bite force was more strongly encoded than gape

by individual neurons in MIo, SIo, and CMA. Moreover, bite

force was more effectively represented in motor vs. somatosensory

cortices. At the population level, bite force and gape were

distinguishable in the monkey trained with the randomized task.

The results are important for understanding neurophysiological

processes underlying biting and masticatory dysfunctions that may

occur in aging, stroke, some pain states (e.g. temporomandibular
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disorders), and neurodegenerative diseases such as Parkinson’s and

Alzheimer’s disease.
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