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Robust cortical encoding of 3D tongue shape
during feeding in macaques

Jeffrey D. Laurence-Chasen1 , Callum F. Ross1, Fritzie I. Arce-McShane 2,3,5 &
Nicholas G. Hatsopoulos 1,4,5

Dexterous tongue deformation underlies eating, drinking, and speaking. The
orofacial sensorimotor cortex has been implicated in the control of coordi-
nated tongue kinematics, but little is known about how the brain encodes—and
ultimately drives—the tongue’s 3D, soft-body deformation. Here we combine a
biplanar x-ray video technology, multi-electrode cortical recordings, and
machine-learning-based decoding to explore the cortical representation of
lingual deformation. We trained long short-term memory (LSTM) neural net-
works to decode various aspects of intraoral tonguedeformation fromcortical
activity during feeding in male Rhesus monkeys. We show that both lingual
movements and complex lingual shapes across a range of feeding behaviors
could be decoded with high accuracy, and that the distribution of
deformation-related information across cortical regions was consistent with
previous studies of the arm and hand.

The sensorimotor cortex encodes various characteristics of the mus-
culoskeletal movements that make up every-day behaviors such as
walking, reaching, and grasping1,2. But not all coordinated motor
actions involve bones moving about joints; the tongue is a muscular
hydrostat unconstrained by rigid internal structure3 which performs
rapid, complex deformations during eating, drinking, and speaking4.
Orofacial sensorimotor cortex (OSMCx) is known to be involved in the
control of tongue movements5–11, but the extent to which 3D tongue
shape is encoded by the sensorimotor cortex has not previously been
evaluated.

Intraoral tongue deformation (shape change) is notoriously diffi-
cult to measure4; the tongue is almost entirely obscured from view by
lips, cheeks, teeth, and jaws. Consequently, prior studies of the cortical
control of tongue kinematics have been restricted to measuring
inferred6, extraoral12, or 2D8,13 tonguemotion only. In this study, weuse
biplanar videoradiography and deep neural networks to measure and
decode a rich set of 3D intraoral tongue kinematics. Understanding the
cortical representation and control mechanisms of such soft-body
kinematics is a central goal of orofacial neuromechanics and soft

robotics14,15, and is essential for future development of rehabilitative
technologies.

Results
Quantifying intraoral tongue kinematics
To measure simultaneous intraoral tongue kinematics and related
cortical activity we used a combination of XROMM (X-ray recon-
struction of moving morphology16) and intracortical microelectrode
array recording, respectively (Fig. 1a–e). Biplanar videoradiography
and the XROMM workflow enable high-resolution measurement of
intraoral tongue kinematics and have recently yielded new insight into
3D tonguemotions during feeding;17–20 the tonguedeforms in complex
and varied ways as it transports food to the molars (stage 1 transport),
manipulates it into a bolus during mastication, moves it into the oro-
pharynx (stage 2 transport), and, ultimately, squeezes it into the eso-
phagus during swallowing4. We imaged the motion of a constellation
of 7 implanted tongue markers (1.0mm diameter tantalum beads;
Fig. 1a, c, d) at 200Hz in two Rhesus macaque monkeys (Ry and Ye)
feeding on grapes. Using a standard marker-based XROMM
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workflow17,19, we reconstructed the 3D positions of the 7 tongue mar-
kers relative to the cranium. A principal component analysis (PCA) of
the XYZ marker positions across all trials found that the first 3 com-
ponents accounted for 90% of the total tongue kinematic variance
(Fig. 1g), but only 70% of the total tongue shape variance (Fig. 1h;
Supplementary Movie 1).

Extracting kinematic variables that generalize across subjects in
the absence of rigid bones and joints is a fundamental challenge
in lingual biomechanics19,20. Herewe chose to use two approaches in an
attempt to balance considerations of generalizability and dimension-
ality (i.e., capturing the complexity of tongue deformation): a
biomechanics-based approach using standard tongue kinematic
variables19 and a Procrustes-based approach using the principal com-
ponents of tongue shape.

Decoding tongue movement
We first used an LSTM21 network to independently predict tongue
movement variables from the responses of a population (n = 100) of
orofacial primary motor cortex (M1o) neurons. The LSTM architecture
was chosen for its demonstrated ability to achieve high decoding
performance without assuming linearity22. Neuronal activity was
recorded with Utah arrays and floating microelectrode arrays (FMAs;
Fig. 1b, e). The positions of implanted tonguemarkers themselves lack
inherent biomechanical significance, sowe calculated a set of standard
tongue kinematic metrics from the XYZmarker positions (Fig. 1f, top):
sagittal flexion, roll, protrusion, as well as regional lengths and widths.
Notably, tongue roll is a mediolateral, asymmetrical motion not

captured by 2D lateral imaging, and has received relatively little
attention despite its key role in feeding19.

UsingR2 (in the “fractionof variance accounted for” sense23) as our
performance metric, we found that all variables were accurately
decoded on cross-validated data fromM1o activity across the range of
functional stages of feeding (Fig. 2). In both monkeys, tongue roll was
decodedmost accurately. The range of mean decoding accuracy of all
variables was 0.43–0.85 (Fig. 2b), well within benchmarks for the arm
and hand24,25.

Due to the cyclic nature of mastication, there are abundant cor-
relations between tongue kinematic variables and those of the jaw19

(Supplementary Fig. 1). To ensure that our decoding performance was
not simply a consequence of the decoder learning and exploiting that
correlational structure, we systematically investigated the relationship
between tongue-jaw correlation and decoding accuracy (Supplemen-
tary Fig. 4). Through iterative sampling of sub-regions of the test trials,
we found that correlation of tongue kinematic variables with man-
dibularmotion does not account for decoding accuracy. Even at times
where tongue motion was completely un-correlated with the jaw,
decoding accuracy could be quite high.

Decoding tongue shape
We next examined the extent to which tongue shape alone could be
decoded from M1o. To that end, we performed a Procrustes super-
imposition to remove translational, rotational, and scale changes in
tongue posture (Fig. 1f, bottom). The Procrustes superimposition
yielded a new set of marker coordinates which contained only tongue
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Fig. 1 | Quantifying intraoral tongue deformation and related cortical
responses. a A constellation of 7 radio-opaque markers (blue spheres) was
implanted into the tongue body to capture whole-tongue kinematics.
b Multielectrode arrays were implanted in the orofacial region of the primary
motor cortex (M1o; dark blue, Utah array; light blue, floatingmicroelectrode array)
and somatosensory cortex (SCo; red, Utah array; orange, floating microelectrode
array). c, d While the subjects fed on grapes, biplanar videoradiography (c) recor-
ded the 2D, intraoral motion of the markers, from which 3D trajectories (d) were
computed. In d, different colors represent different tongue markers, S-I, super-
oinferior; A-P, anteroposterior; M-L, mediolateral, all relative to the cranium.

e Spike raster of neural data (100 representative neurons from M1o) collected
synchronously with the kinematics shown in d. f Top, digital renders of tongue and
mandible posture at three timepoints in a chewing cycle and computed kinematic
variables. Bottom, a constrained Procrustes superimposition was performed to
remove translational, rotational, and scale changes in marker positions, leaving
only shape change. g Percent variance explained by first 10 components of a
principal component analysis on marker positions (relative to the cranium) across
all trials.h Sameasg, but computedonmarkerpositions in Procrustes shape space.
See “Methods: XROMM data processing” for details on image generation.
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shape information. Changes in tongue shape during feeding
were complex; 7 principal components were required to account for
the majority (>90%) of total shape variance (Fig. 1h), In order to pre-
serve this complexity, we used the scores of those first 7 PCs (in order
of % variance explained) as “complex deformation” variables to be
decoded. This approach resembles one used in previous studies which
decoded principal components as a means of investigating joint and
muscle synergies24,26.

We found that multiple PCs of tongue shape could be decoded
with high accuracy (Fig. 3 and Supplementary Movie 2). Notably, the
first two shape PCs were correlated with sagittal flexion and roll,
important elements of tongue deformation during feeding:19

(Supplementary Figs. 1 and 2). Thus, we were unsurprised at their high
decoding accuracy. However, PCs 3–7 represented more complex,
compound shape changes that are not readily attributable to a single
standard kinematic variable. The decoding accuracy of these smaller-
variance PCs was lower, but we were still able to reconstruct
whole-tongue shape change with sub-millimeter accuracy from inde-
pendently decoded shape PCs (Supplementary Fig. 3). While the neg-
ligible decrease in reconstruction error with the addition of PCs
5–7 suggests that the decoder may not be capturing neural variance
that is relevant to the most subtle aspects of tongue shape, decoding
was possible even at periods where the correlation of shape PCs with
kinematics variables was low (Supplementary Fig. 9).
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Fig. 2 | Decoding tongue kinematics from motor cortex. a Decoded (colored
lines) and ground-truth (grey lines) kinematics of 7 standard tongue movement
variables, each independently decoded for a subsection of a representative test
trial. The colored bar at the top of the figure indicates the behavior being

performed. S2T denotes stage 2 transport. (See Supplemental Methods for detail
on gape cycle types.) bMean decoding accuracy (R2), by variable, for both subjects.
Each bar represents themean decoding accuracy for that variable across the cross-
validation folds (n = 6). Error bars represent ±1 standard deviation.
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Decoding of tongue-related information differs between M1o
and SCo
In the limb, high-accuracy decoding can be achieved from small
populations of both primary motor cortex (M1) neurons and somato-
sensory cortex (SC) neurons. To test whether this is also true of the
tongue from OSMCx, we trained decoders with the same number of
neurons (n = 55) from each cortical area on identical kinematic data-
sets. We found that, in both monkeys, M1o decoding accuracy was
significantly better than that of SCo (Fig. 4a; P <0.0001, Wilcoxon
Signed Rank Test).

After determining that M1o populations contain more tongue-
related information, we next assessed the extent to which that infor-
mation was distributed across populations of M1o neurons. We varied
the number of neurons used as decoder input from 1 to 100, randomly
drawing sub-populations at each ensemble size (Fig. 4b). We found
that decoding accuracy for both variable types began to plateau at
approximately 25-35 neurons, but continued to increase, albeit at a
slower rate, as the ensemble grew to 100 neurons. These results are
remarkably consistent with previous studies in the arm and hand,
which, although using completely different decoders, found a similar
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ensemble size-performance relationship25,27. Furthermore, in Fig. 4b,
while the shape of the accuracy versus ensemble size curves are rela-
tively similar across the twomonkeys, there is a clear vertical shift (i.e.,
difference in decoding performance) betweenmonkeyRy andmonkey
Ye. The similarity of curve shape indicates a similar distribution of
shape-related information within the two populations of sampled
neurons. This similarity emerges despite the likelihood of slight inter-
individual differences in array placements in the cortex that may
explain differences in overall decoding accuracy.

We next assessed the extent to which tongue-related information
was present in the firing of individual cortical neurons. For a subset of
decoders trained with single-neuron inputs, we examined the dis-
tribution of average decoding accuracy for individual variables. Single
neuron decoding accuracy varied widely, with the majority of single
neurons failing to achieve high-accuracy decoding for any variables
(Fig. 4c). However, bothmonkeys had a small subset of neuronswhose
decoding performance was higher than the average performance of
decoders trained with 5 and even 10 times as many cells (Fig. 4c, right
tail of distribution). A permutation test of single-neuron decoding
accuracy values after shuffling the neural and kinematic data sug-
gested that the likelihood of observing these results by chance is
extremely low (p < 0.0001; 10,000 permutations; see Methods).
Further inspection of the decoding performance of select neurons
illustrated instances of neuronal “tuning” to different tongue shape

parameters (Supplementary Fig. 10). This unequal (at the level of
individual neurons) distribution of movement information is well
documented in both the upper limb region as well as the orofacial
region of M127.

Taken together, we infer that exact array location may be a major
factor in absolute decoding performance, but that the general dis-
tribution of movement- and shape- related information within sub-
populations of M1 neurons is relatively consistent across different
functional areas (i.e., orofacial and upper limb)28.

Discussion
The tongue is a muscular hydrostat lacking joints and capable of
complex, nonlinear deformation3. Using deep neural networks to
decode tongue movement and deformation from OSMcx during
feeding, we found that information about 3D tongue shape is present
and accessible in M1o neuronal ensembles of various sizes. Our results
build upon previous studies which demonstrated that tongue protru-
sion direction and tongue tip position can be decoded from cortex
with the same methods used commonly in the upper limb5,8,29. Speci-
fically, various decoding algorithms have previously been used to
successfully predict both hand direction27,30 and 3D posture—in the
form of finger-joint angles24,31,32 from non-human primate M1.

Though the hand and tongue are anatomically disparate (the
tongue is a muscular hydrostat with no internal joints3) the two
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effectors exhibit striking functional similarities33. Both rapidly change
their 3D posture to deftly control food and other objects4,20,34, and
dexterity in both is enabled by rich mechanosensory innervation that
provides a wealth of ongoing feedback to the brainstem and sensor-
imotor cortex35–37. Moreover, the relative complexity of tongue shape
and hand posture appear to be similar38. We found that on the whole
the cortical representation of tongue shape and movement is con-
sistent with this functional analogy. Individual M1o neurons contained
a variable amount of tongue movement-related information (Fig. 4c),
and decoding performance began to plateau at approximately 25–35
cells (Fig. 4b). We achieved consistently higher decoding accuracy
from populations of M1o as compared to SCo (Fig. 4a). This result was
surprising, as the tongue and oral cavity are richly innervated with
various types of mechanoreceptors, and various studies have
demonstrated the complex receptive field structure of cortical orofa-
cial sensory neurons39,40. Overall, the fact that decoding is comparable
for tongue and limbs is not a priori expected. An alternate outcome
would have been that sensorimotor cortex decodes gross movements
of the tongue such as flexion and protrusion, but not detailed
tongue shape.

The nature of the experimental behavior is an important factor in
generalizing findings beyond the specifics of a single study. Motor
neuroscience experiments have typically involved extensively training
animals to perform discrete movements such as reaching in different
directions or grasping various objects (e.g., refs. 24,41,42). Our task
differed from this structure in that it was a cyclic, naturalistic behavior
that involved no training. Animals initiated and completed feeding
sequences freely. Additionally, feeding is also punctuated by discrete
events—swallows—that are voluntarily initiated but rich in reflexive
components. We believe all of these factors strengthen the present
study; though repetitive, the behavior was compound cyclic-discrete
in nature, and the different stages of feeding (ingestion, chew, swal-
low) elicited a range of kinematics. Importantly, it is likely that varia-
tion in tongue kinematics within a feeding sequence is substantially
greater than variation between sequences of similar and even different
food types19,43.

Without joints, the tongue’s theoretical dimensionality, or num-
ber of degrees of freedom, is large. However, there are a finite number
of muscles (~16) and motor units within the tongue44; and realistically
constrained computationalmodels have yielded impressive results45,46.
Our results demonstrate that information about complex tongue
shapes and movements can be summarized in relatively few (<10)
dimensions (Fig. 1h), and much of that information is represented in
M1o activity. There were inter-individual differences in aspects of
tongue shape that the shape PCs captured (Supplementary Fig. 2),
whichmay simply be a consequence of the underlyingmathematics of
PCA when components explain similar amounts of variance. However,
there were also clear patterns of similarity between the shape PCs, in
that, in both subjects, shape PC1 captured elements of sagittal flexion
and shape PC3 captured posterior tongue elevation likely related to
swallowing. Further studies should investigate the cortical encoding
and decoding of the specific behaviors that feeding comprises (i.e.,
swallowing, transport).

Much is still unknown about the fundamental neuromechanical
mechanisms of lingual control. In particular, feeding is semi-automatic
and is typically assumed to involve structures outside of cortex. The
fact that M1 and SC can decode details of tongue shape suggest at a
minimum that sensorimotor cortex is informed of the detailed kine-
matics and shape of the tongue during feeding. Itmay indicate that the
cortex is involved in driving behavior in a soft-tissue effector.

Our results have significant implications for the development of
lingual neuroprostheses. Currently, individuals who experience total
loss of tongue function or full glossectomy have few options for
regaining tongue function47. Mandibular and palatal prostheses exist,
but do not offer any active aid in speaking or swallowing48. The finding

that 3D tongue posture can be accurately decoded from the sensor-
imotor cortex opens up a new avenue for potential brain computer
interface-based prostheses for restoring orolingual function and
communication49. As the field of soft-robotics continues to flourish15,
the reality of such a device becomes increasingly likely.

Methods
Animals and surgery
We recorded kinematics and cortical neural activity from two adult
male rhesusmacaques (monkeys Ry andYe;Macacamulatta, 9–10 kg).
Monkeys received full-time care from husbandry and veterinary staff,
and all protocols were approved by the University of Chicago Animal
Care and Use Committee and complied with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. Surgical
procedures consisted of the implantation of radiopaque beads for
marker-based XROMM16 and the implantation of intracortical micro-
electrode arrays for the recording of neural activity10,50.

In the marker implantation surgery, an angiocatheter and stylus
were used to insert 15 radiopaque beads (tantalum, 1mm diameter)
into the tongue at various positions and depths following previously
described methods17. In brief, beads were implanted at 15–25mm
intervals down the anterior–posterior axis of the tongue, with 2–3
beads in each layer (distributed across the coronal plane), except the
tongue tip, which had one bead. For the analysis in this study, a subset
(7) of the middle and anterior tongue beads, each at approximately 3-
5mm depth, were used (Fig. 1a). These beads were selected for their
consistent locations between the two individuals and their uniform
distribution across the anterior and middle tongue. Additional beads
were implanted into the cranium and mandible (4 per bone) using a
standard, drill-based technique16.

In the array surgery, each monkey was implanted with two Utah
arrays (Blackrock Microsystems, Inc., Salt Lake City, UT), and two
floating microelectrode arrays (FMA, Microprobes for Life Science,
Gaithersburg, MD) (Fig. 1b). Prior to the surgeries, individual-specific
surgical plans were established through a multi-modal approach. For
each monkey, 3D mesh models of the cranium and brain were gener-
ated fromCTandMRI scans, respectively, using 3DSlicer51 (www.slicer.
org). The models were then manually registered (aligned) in Maya
2020 (Autodesk, San Rafael, CA, U.S.A), and the approximate location
of the orofacial sensorimotor cortex was identified as rostral to the tip
of the intraparietal sulcus on the brain model. The corresponding
superficial location was then identified on the skull model and the
coordinates of that location relative to bregma were recorded and
used to inform intra-operative craniotomy location. After the cra-
niotomy, surfaceelectrical simulation (and its evokedmovements)was
used to identify the borders of the orofacial sensorimotor cortex. Utah
arrays (96 electrodes; M1 electrode length: 1.5mm; SC electrode
length: 1.0mm)were implanted into orofacial region of rostral M1 and
areas 1/2 of the somatosensory cortex. Floating microelectrode arrays
(32 electrodes; M1 electrode length: 3–4.5mm; SC electrode length:
4.0–8.7mm) were implanted into caudal M1 and area 3a/3b9,10. Array
arrangement can be seen in Fig. 1b and Supplementary Fig. 8. A post-
operative CT scan was taken, and 3D models of the array and elec-
trodeswere generated, registered, and combinedwith the pre-existing
cranium and brain models, to confirm correct electrode placement.

Behavioral task and dataset composition
Subjects received and consumed food items while head-fixed and
seated in a standardprimate chair in theUniversity of ChicagoXROMM
Facility. Experimental food comprised half grapes of equal size pre-
sented directly to the monkey’s mouth via a long stylus. Trials began
with the depression of the X-ray pedal just before initial food-mouth
contact (beginning of ingestion). The X-ray machines (Fig. 1b) were
limited to 10 s of continuous exposure, after which an approximately
1 s break in recording was required before beginning a subsequent
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trial. In most cases the complete feeding sequence (initial ingestion to
terminal swallow) occurred within a single 10 s trial. Sometimes,
however, one feeding sequence spanned multiple trials. In this study,
‘trial’ refers to the system-defined 7–10 s video, which often, but not
always corresponded to a full feeding sequence. All trials contained a
mix of gape cycle types52 (i.e., stage 1 transport, rhythmic chewing,
manipulation, stage 2 transport, swallow) that involved a range of
tongue movements and shape changes that moved food through the
mouth and into the esophagus. For select trials, as in Figs. 2 and 3, gape
cycle typeswere determined via visual inspection of theX-ray videos in
the open-source software XMALab (version 1.5) in accordance with
commonly accepted definitions52.

Multiple datasets (sessions comprising 40–60 trials of multiple
food types), were collected for each subject across multiple days.
However, due to inherent complexity and time-consuming nature of
processing integrated XROMM and neural data, one session per sub-
ject was used in the present study. For each session 28 half-grape trials
were drawn and partitioned according to the cross-validation scheme
described below. Given the importance of across-session functionality
in brain-machine interface-based protheses, future work should
explore the stability of decoding across multiple days.

XROMM data processing
We used the XROMMworkflow to record and reconstruct the 3D rigid
bodymotions of the cranium andmandible, as well as the 3D positions
of a constellation of small beads implanted in the tongue (Fig. 1c; see
refs. 16, 17 for a detailed description of the process). Kinematic data
(biplanar X-ray videos to visualize radiopaquemarkers) were collected
over multiple sessions at the University of Chicago XROMM Facility
with Procapture 1.0.3.6 (Xcitex, Woburn, MA). Additionally, post-
surgery CT scans were taken with a Vimago veterinary CT scanner
(Epica Animal Health, Duncan, NC) from which mesh models of the
cranium, mandible, and markers were created (segmented) in the
open-source software 3D Slicer 4.11 (www.slicer.org). The 3D coordi-
nates of the cranial and mandibular markers within each bone were
extracted from themarkermeshmodels using theXROMM_MayaTools
plug-in to enable rigid body fitting in XMALab.

Marker tracking was performed with a workflow53 that integrates
XMALab and DeepLabCut54,55. In short, deep neural networks were
trained to track the 2D positions of the tantalum beads in both of the
X-ray videos. Those 2D positions were then imported into XMALab
where their 3D positions were triangulated, and the motion of the two
rigid bodies (cranium and mandible) were computed. Rigid body
transformation matrices and 3D points were filtered in XMALab with
the built-in zero-lag, 30Hz low-pass Butterworth filter. All subsequent
data processing and analysis were performed in MATLAB 2020b
(MathWorks, Natick, MA, U.S.A). All 3D imagery of tongue posture and
jaw position were created and rendered with Maya 2020, except for
Fig. 1d (madewithMATLAB). In short, 3D bonemodels were generated
from CT scans and were imported into Maya, where textures, lights,
and virtual cameras were added. The final images were then exported
either as still frames or as videos. Text was added to videos using
Premiere Pro CC (Adobe Inc., San Jose, CA). The brain and monkey
illustration seen in Fig. 1b, c, respectively, were generated with Illus-
trator CC (Adobe Inc., San Jose, CA).

Kinematic variables
Jaw pitch was measured with a temporomandibular joint coordinate
system56, where the primary (i.e., first in rotation order) rotational axis
passed through both mandibular condyles57. The joint coordinate
system was computed by multiplying the mandible rigid body trans-
formation matrix by the inverse of the cranium rigid body transfor-
mation matrix in every frame.

The first 7 tongue kinematic variables were calculated from the
XYZ positions of subsets of the tongue markers. Sagittal flexion was

the angle formed between the posterior deep, middle superficial, and
tongue tip marker, following a recent definition19. Protrusion was the
mean X-position value (relative to the cranium) of the three anterior-
most markers (tongue tip, anterior superficial right and left). Roll was
calculated using a pseudo-rigid body approach. First, the pseudo-rigid
body motion of the anterior tongue, relative to the cranium, was cal-
culated by fitting a rigid constellation of markers (taken from a frame
at which the tongue was at rest), to the anterior 6 tongue markers in
every frame of the video. Fitting was performed using MATLAB’s
Procrustes function, and the resultant rotation matrix was decom-
posed into Tait-Bryan angles, fromwhich only x-axis rotation (roll) was
extracted. The two lengths and widths were the Euclidean (straight-
line) distances of pairs of markers (Fig. 1a inset; middle width, markers
5 and 6; anterior length,markers 1 and 4;middle length,markers 4 and
7; anterior width, markers 2 and 3).

Complex shape was quantified using a Generalized Procrustes
Analysis approach58. In short, a constrained Procrustes super-
imposition (rigid transformationwithout reflection) was performedon
the full constellation of tongue markers in every frame (all trials con-
catenated, for each individual), optimally fitting the tongue posture in
each frame to a computed mean posture. This superimposition
effectively removed changes to tongue position, rotation, and scale,
leaving only changes in shape (deformation). Then a principal com-
ponent analysis (PCA) was performed on the Procrustes-transformed
XYZ marker positions (input: 7 markers, 21 dimensions), and the PC
scores of the first 7 components (explaining 90%+ of the variance in
tongue deformation) were used as “complex” deformation variables.

Electrophysiology and neural data processing
Neural signals were recorded with Utah arrays (Blackrock Micro-
systems, Salt Lake City, UT) and Floating Microelectrode arrays
(Microprobe for Life Science Inc, Gaithersburg, MD) using a Grapevine
Neural Interface Processor (Ripple Neuro, Salt Lake City, UT). Signals
were amplified and bandpass filtered between 0.1Hz and 7.5 kHz, and
recorded digitally (16-bit) at 30 kHz per channel. Only waveforms
(1.7ms in duration; 48 sample time points per waveform) that crossed
a thresholdwere stored andoffline spike sorted (Offline Sorter, Plexon,
Dallas, TX) to remove noise and to isolate individual neurons. Total
neuron counts were, for monkey Ry, 235 M1 neurons and 55 SC neu-
rons, and formonkey Ye, 104M1neurons and 55 SCneurons. The time-
varying firing rates of neurons were computed by summing spikes in
5ms time bins (the same resolution as kinematic data). Preliminary
analysis showed that decoding was possible with unsorted, multiunit
activity but exhibited poorer performance than decoding with sorted
neuraldata. Additional early analysisdemonstrated that therewas little
difference in decoding performance between the two arrays in the
same brain area (Supplementary Fig. 5), so data from the twoM1 arrays
and two SC arrays were combined in both subjects. For the analyses
depicted in Figs. 2 and 3, 100 M1 neurons were randomly drawn from
the pool of total neurons as decoder input for each subject.

Decoding
We used a long short-term memory (LSTM) network to continuously
decode tongue kinematics from cortical neuronal activity21,22. An LSTM
network is a type of recurrent neural network where LSTM cells pro-
vide a means of mitigating the exploding/vanishing gradient problem
through the selective “remembering” and ‘forgetting’ of specific
information59. Here, we used MATLAB’s native LSTM functionality in
the Deep Learning Toolbox to train a series of LSTMs for sequence-to-
sequence decoding. Input to the LSTMwas a 2D array of binned spikes
with dimensions number of neurons x number of timesteps. Output of
the LSTM was the given predicted variable’s values, in the form of an
array with dimensions 1× number of timesteps. During inference
(decodingof test trials), the networkwas providedwith neural data in a
stepwisemanner, thus its instantaneouspredictionswerederived from

Article https://doi.org/10.1038/s41467-023-38586-3

Nature Communications |         (2023) 14:2991 7

http://www.slicer.org


prior and present (but not future) neural activity. Network hyper-
parameters are provided in Supplementary Table 2. We used a
sevenfold cross-validation strategy to avoid overfitting. For each sub-
ject, 6-folds of the data were iteratively left out as test sets, and the
seventh fold held out and used exclusively for hyperparameter selec-
tion. Each test fold comprised 4 trials of approximately 6–10 s in
duration each. Each train fold comprised 24 trials of the same dura-
tions. For some analyses that required many iterations of training
(single neuron decoding), three folds were randomly selected and
used as test folds to minimize computation time (see Supplementary
Table 2). To assess the likelihood of observing the high decoding
performance of single neurons reported in Fig. 4c solely by chance, we
performed an analysis in which we shuffled the neural data over
feeding sequences, such that the neural data from feeding sequence X
was used to decode the kinematics in sequence Y for 40 individual
neurons with a mean firing rate of over 3 spikes/second. Shuffling was
performed 10 times, and we then performed a permutation test
(10,000 permutations) on the non-shuffled data and each iteration of
shuffled data. To ensure the test yielded information about the right-
tail of the distribution (see Fig. 4c), we used themean of fourth quartile
of the resampled data as the test statistic. In our results we con-
servatively report the maximum p-value of any shuffled iteration.

We performed Bayesian optimization-based hyperparameter
selection for a subset of variables. In evaluating the optimization
results, it immediately became evident that within a relatively large
envelope the impact of changes to hyperparameters on decoding
accuracy was minimal. This result is consistent with recent experi-
mentation with network hyperparameter selection in decoding
workflows22. In general, we found that increases in hidden unit number
and epochs generally resulted in better accuracy, but those increases
(e.g., an R2 of 0.65 to 0.67 for hidden unit number increase of 200 to
400) were minimal relative to the heavy computational cost they
incurred.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw neural and kinematic data are available on request from the
corresponding author J.D.L.-C. Source data are provided with
this paper.

Code availability
The code used in the XROMM analysis of this study is available at
https://doi.org/10.5281/zenodo.7734803. Additional MATLAB scripts
on request from the corresponding author J.D.L.-C.
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